KING FAHD UNIVERSITY OF PETROLEUM & MINERALS DEPARTMENT OF MATHEMATICS & STATISTICS Term 181 STAT 302 Final Exam

Name:

ID #:

Observe the following rules, otherwise you will lose marks

- ➢ Show all details.
- State all assumptions needed
- ▶ If there is a rule you are using, write down that rule.
- > Answers without justification are not accepted.
- ➢ For testing problems
 - Use $\alpha = 5\%$, unless otherwise is stated
 - Always write down
 - the hypotheses
 - the test statistic
 - the rejection region
 - the observed test statistic
 - the decision, and
 - the conclusion

Question	Maximum Marks	Marks Obtained		
1	37			
2	6			
3	12			
Total	55			

1) Let Y_1, \dots, Y_{100} be a random sample from the exponential distribution $f(y) = \frac{1}{\beta} e^{-\frac{y}{\beta}}, y > 0$. a) Find a sufficient statistic for β . (2 marks)

b) Find a UMVU estimator for β .

(2 marks)

c) Find the maximum likelihood estimator of P(Y > 1). (4 marks)

d) Find the density of $Y_{(100)}$.

(2 marks)

e) Does $Y_{(100)}$ have an exponential density?

(1 mark)

f) If *m* is the median of Y, find $P(Y_{(100)} > m)$.

g) If $\beta = 2$, Find $P(\overline{Y} > 2.1)$.

h) Is $Y_{(1)}$ an unbiased estimator of β ?

i) Is $Y_{(1)}$ a consistent estimator of β ?

j) Construct an unbiased estimator of β based on $Y_{(1)}$, call it $\hat{\beta}_1$. (1 marks)

(2 marks)

(3 marks)

(4 marks)

(2 marks)

k) Find the efficiency of $\hat{\beta}_1$ relative to \bar{Y} .

l) Construct a 90% upper one-sided confidence interval for β based on $Y_{(1)}$. (5 marks)

m) At the 5% level, find the rejection region of the most powerful test of $H_0: \beta = 1$ vs $H_a: \beta = 2$, based on $Y_{(1)}$.

2) Aptitude tests should produce a large amount of variation so that an administrator can distinguish between persons with low aptitude and persons with high aptitude. The standard test used a certain industry has been producing scores with a standard deviation of 10 points. A new test is given to 20 prospective employees and produces a sample standard deviation of 12 points. Are scores from the new test significantly more variable than scores from the standard test? Use $\alpha = 0.01$

(6 marks)

3) The following table shows the time intervals, in seconds, between successive SUV's in free flowing traffic on a highway.

Time	(0,20]	(20,40]	(40,60]	(60,90]	(90,120]	(120,180]
Frequency	41	19	16	13	9	2

Can these time be modeled by an exponential distribution? (12 marks)