King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics

```
Math 550 - Linear Algebra (Term 181)
```

Final

Notes:

- Duration = 3 hours.
- Problem 1 is worth 20 points.
- Problems 2-6 are worth 10 points each.

(1) Let A be the following matrix

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

and let T be the linear operator on \mathbb{R}^4 associated to A in the standard basis $S := \{e_1, e_2, e_3, e_4\}.$

- (a) [4 points] Use row and column operations on $\mathbb{R}[x]^{4\times 4}$ to reduce xI A to its Smith normal form.
- (b) [3 points] Use (a) to give the invariant factors, the minimal and characteristic polynomials of T.
- (c) [4 points] Give an explicit cyclic decomposition of \mathbb{R}^4 under T.
- (d) [3 points] Give the Jordan form for T.
- (e) [4 points] Give the primary decomposition of \mathbb{R}^4 under T.
- (f) [2 points] For each *i*, let E_i denote the projection of \mathbb{R}^4 on the primary component W_i . For each *i*, give $[E_i]_S$, the matrix of E_i relative to *S*.

(2) (a) [5 points] In the \mathbb{R} -vector space of polynomials of degree at most 3, equipped with the inner product $(f|g) = \int_0^1 f(t)g(t)dt$, let W denote the subspace of scalar polynomials. Give an explicit basis for the orthogonal complement of W.

(b) [5 points] In the real inner product space of real-valued continuous functions on the interval [-1, 1], endowed with the inner product $(f|g) = \int_{-1}^{1} f(t)g(t)dt$, find the orthogonal complement of the subspace of odd functions.

(3) Let *V* be a finite-dimensional complex inner product space and let *T* be a linear operator on *V*. Prove that *T* is self-adjoint if and only if $(T\alpha|\alpha)$ is real for every $\alpha \in V$.

(4) Let *V* be a finite-dimensional <u>complex</u> inner product space. Let $S \coloneqq \{\alpha_1, ..., \alpha_n\}$ be an orthonormal basis for *V* and let *T* be a <u>normal</u> linear operator on *V* such that $A \coloneqq [T]_S$ is upper-triangular with entries a_{ij} (that is, $a_{ij} = 0 \forall i > j$).

(a) [4 points] Prove that $a_{1j} = 0 \forall j \ge 2$.

(b) [4 points] Use induction on *i* to prove that $a_{ij} = 0 \forall j \ge i + 1$.

(c) [2 points] Deduce from above that: "a linear operator T on V is normal if and only if V has an orthonormal basis consisting of characteristic vectors for T."

(5) Let f and g be two bilinear forms on a finite-dimensional vector space V. Suppose that f is non-degenerate.

(a) [6 points] Prove that g is non-degenerate if and only if there exists $T \in End(V)$ with $f(\alpha, \beta) = g(\alpha, T\beta)$ for all $\alpha, \beta \in V$.

(b) [4 points] Is the result given in (a) true if f is singular? [Justify]

(6) Let V be a finite-dimensional vector space over a field F and let f be a nondegenerate symmetric bilinear form on V.

(a) [8 points] Let $B := \{\alpha_1, ..., \alpha_n\}$ be a basis for V. Use the linear transformation (of Section 10.1) $L_f: V \to V^*$ to show that there exists a unique basis $B' := \{\alpha'_1, ..., \alpha'_n\}$ of V such that:

- $f(\alpha_i, \alpha'_i) = \delta_{ij}$ for all *i* and *j*, and hence
- $\alpha = \sum_{i} f(\alpha, \alpha'_{i}) \alpha_{i} = \sum_{i} f(\alpha_{i}, \alpha) \alpha'_{i}$ for every $\alpha \in V$.

(b) [2 points] Show that if $F = \mathbb{C}$, then there is a basis B of V such that B' = B.

----- Good Luck -----