```
King Fahd University of Petroleum & Minerals
Department of Mathematics and Statistics
Math 550 - Linear Algebra (Term 181)
```

Exam 1

Notes:

Duration = 3 hours.
Each problem is worth 10 points.

(1) In the following, determine whether the linear operator T is diagonalizable. If affirmative, find a basis with respect to which T has a diagonal matrix.

(a) [3 points]
$$T(x, y) = (-y, x), \forall (x, y) \in \mathbb{C}^2$$
.
(b) [3 points] $T(x, y) = (y, 0), \forall (x, y) \in \mathbb{C}^2$.
(c) [4 points] $T(x, y, z) = (2x + y, 5y + 3z, 8z), \forall (x, y, z)$

(2) Let *V* denote the space of polynomial functions over \mathbb{R} and let End(V) denote the space of linear operators on *V*.

(a) [2 points] Give explicit examples of T_1 and $T_2 \in End(V)$ with $T_1T_2 \neq T_2T_1$.

 $\in \mathbb{R}^3$.

- (b) [2 points] Give an example of $T \in End(V)$ which is non-singular and non-invertible.
- (c) [6 points] Let $p \in V$ with degree(p) = 2 and let $T \in End(V)$ defined by Tf = (pf)''. Prove that T is an isomorphism. [For the proof of the surjection, the use of linear algebra is compulsory]

(3) Let V be a finite-dimensional vector space and let $T \in End(V)$. Consider the following assertions:

(i) $rank(T^2) = rank(T);$

- (ii) $range(T) \cap nullspace(T) = 0;$
- (iii) $nullspace(T^2) \subseteq nullspace(T)$.
- (a) [6 points] Prove $(i) \Rightarrow (ii)$.
- **(b)** [2 points] Prove $(ii) \Rightarrow (iii)$.
- (c) [2 points] Prove $(iii) \Rightarrow (i)$.

(4) Let T be a linear operator on \mathbb{R}^3 .

- (a) [5 points] Prove that if $T^3 = 0$ and $T^2 \neq 0$, then there is an ordered basis S for V such that $[T]_S = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$
- (b) [5 points] Prove that if A and B are two 3×3 matrices over \mathbb{R} such that $A^2 \neq 0$ and $B^2 \neq 0$ with $A^3 = B^3 = 0$, then A and B are necessarily similar.

(5) Let *T* be the linear operator on \mathbb{R}^4 which is represented in the standard ordered basis by the matrix

$$A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & d \end{pmatrix}.$$

Under what conditions on *a*, *b*, *c* and *d* is *T* diagonalizable?

(6) Let f and p denote the *characteristic* and *minimal* polynomials, respectively, of a given matrix. Find f and p for the following matrices.

(a) [2 points]
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$
 over \mathbb{R} .
(b) [2 points] $A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$ over \mathbb{R} .
(c) [6 points] $A = \begin{pmatrix} 0 & 0 & 0 & 0 & -3 \\ 1 & 0 & 0 & 0 & 6 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$ over \mathbb{C} .