Department of Mathematics & Statistics, KFUPM Math 472 Syllabus (181) Khaled M. Furati

Course Title:	Numerical Analysis II			
Course Description:	Approximation of functions: Polynomial interpolation, spline interpolation, least squares theory, adaptive approximation. Differentiation. Integration: basic and composite rules, Gaussian quadrature, Romberg integration, adaptive quadrature. Solution of ODEs: Euler, Taylor series and Runge-Kutta methods for IVPs, multistep methods for IVPs, systems of higher-order ODEs. Shooting, finite difference and collocation methods for BVPs. Stiff equations.			
Prerequisite:	MATH 371 or CISE 301			
Textbook:	Richard L. Burden and Douglas Faires, Numerical Analysis, 10th ed, 2016			
Learning Outcomes:	 After completion of the course, the student should be able to: Interpolate functions and data using Taylor series and polynomials Approximate functions and data using Least Square Approximation Approximate derivatives and integrations Calculate numerical solutions of IVP for ODEs 			

• Solve numerically BVP for ODEs

Assignment: Homework, Midterm Exam, and Final Exam

Ch	Sec	Topics	No. Weeks		
3	Interpolat	ion and Polynomial Approximation			
	Review	Taylor Polynomials and Series (sec 1.1)	3		
	3.1	Interpolation and the Lagrange Polynomial			
	3.3	Divided Difference			
	3.4	Hermite Interpolation			
	3.5	Cubic Interpolation			
4	Numerica	Differentiation and Integration	3		
	4.1	Numerical Differentiation			
	4.2	Richardson's Extrapolation			
	4.3	Elements of Numerical Integration			
	4.4	Composite Numerical Integration			
	4.7	Gaussian Quadratures			
5	IVPs for O	IVPs for ODEs			
	5.2	Euler Method	4		
	5.4	Runge-Kutta Methods			
	5.6	Multistep Methods			
	5.1	Stability			
	5.11	Stiff Differential Equations			
11	BVPs for C				
	11.1	The Linear Shooting Method	2		
	11.3	Finite-Difference Methods for Linear Problems			
8	Approxim				
	8.1	Discrete LSA	2		
	8.3	Chebyshev Polynomials			
	8.4	Rational Function Approximation			