King Fahd University of Petroleum & Minerals Department of Mathematics & Statistics

Math 472 (181)

Numerical Analysis II

Instructor: Khaled Furati

Homework 1 (Taylor Polynomial)

Let $f(x) = \sin x$.

- 1) Find the Taylor polynomials $P_n(x)$, n=1,3,5,7, about $x_0=0$, in the interval $[-\pi,\pi]$.
- 2) Write a Matlab script to plot in a single figure f(x) and $P_n(x)$, n=1,3,5,7. Submit the script and the graph.
- 3) Find an upper bound for $|f(x) P_5(x)|$, $0 \le x \le 0.3$, and compare the bound to the actual error. Plot.
- 4) Approximate $\int_0^{\pi} f(x) dx$ using $\int_0^{\pi} P_5(x) dx$ and compute the relative error.

Homework 2 (Lagrange Interpolating Polynomial)

- 1. Consider the function $f(x) = \sin(\ln x)$.
 - a. Construct the second degree Lagrange interpolating polynomial P for f using the nodes $x_0 = 2.0, x_1 = 2.4, x_2 = 2.6$. Plot f and P in the interval [2.0, 2.6].
 - b. Find a bound for the absolute error on the interval [2.0, 2.6].
 - c. Compare the bound and the actual error. Plot.
- 2. "Discussion Questions" number 1, page 115
- 3. "Discussion Questions" number 2, page 115

DISCUSSION QUESTIONS

- Suppose that we use the Lagrange polynomial to fit two given data sets that match exactly
 except for a small perturbation in one of the data points due to measurement error. Although
 the perturbation is small, the change in the Lagrange polynomial is large. Explain why this
 discrepancy occurs.
- 2. If we decide to increase the degree of the interpolating polynomial by adding nodes, is there an easy way to use a previous interpolating polynomial to obtain a higher-degree interpolating polynomial, or do we need to start over?

Homework 3 (Divided Differences)

Consider the function $f(x) = \ln x$.

- 1. Write a Matlab code that constructs the divided difference table of f corresponding to the ordered nodes $\{1, 4, 5, 6\}$.
- 2. Let P be the cubic Newton's interpolating polynomial obtained from the table. Plot f and P. Calculate the relative error at x=2.
- 3. Plot and compare the graphs of the quadratic Newton's interpolating polynomials corresponding to the following ordered nodes:

$$\{1,4,5\}, \{4,1,5\}, \{5,1,4\}.$$

Homework 4 (Cubic splines)

Consider the function $f(x) = \cos(2\pi x)$ and the following data generated by this function.

Х	0.0	0.2	0.4	0.6	0.8	1.0
У	1.000	0.3090	-0.8090	-0.8090	0.3090	1.0000

Use Matlab functions spline and polyfit to compare the following:

- the function *f*
- interpolating polynomial
- clamped spline
- not-a-knot spline

Homework 5 (Numerical differentiation)

1) Let $h = x_{i+1} - x_i$ and $y_i = y(x_i)$. Explain why the following is wrong.

$$y'(x_j) = \frac{1}{h} (2y_{j+1} - y_j) + O(h).$$

2) Faraday's law characterizes the voltage drop across an inductor as

$$V = L \frac{di}{dt}$$

where, V = voltage (V), L = inductance (H), i = current (A), t = time (s). The following data is for an inductance of 4 H.

t	0	0.1	0.2	0.3	0.4	0.5
j	0	0.16	0.32	0.56	0.84	2.0

Using Matlab, plot in <u>one figure</u> the interpolating polynomials for the voltage using the following approximations.

- a. Forward-difference
- b. Centered-difference
- c. Richardson extrapolation using forward-difference

Compare and comment on your results.

Homework 6 (Numerical integration)

Use Gaussian quadrature with n=2 to approximate the integral

$$\int_0^2 e^x x \cos x \ dx.$$

Homework 7 (Numerical IVP)

Consider the IVP

$$y' = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 2.0$.

The exact solution is

$$y(t) = (t+1)^2 + e^t$$
.

Produce Table 5.8 and Table 5.13 for this problem.

Homework 8 (Approximations)

- 1) Repeat Example 1 of section 8.3 for the function $f(x) = xe^{2x}$. Produce Table 8.8 and Figure 8.12 for this function.
- 2) Derive the Padé approximation to e^{-x} of degree 4 with n = 2 and m = 2:

$$R_{2,2}(x) = \frac{12 - 6x + x^2}{12 + 6x + x^2}.$$

3) Plot the function e^{-x} and its 4th order Padé approximations:

$$R_{2,2}(x), \qquad R_{0,4}(x) = \frac{24}{24 + 24x + 12x^2 + 4x^3 + x^4}, \qquad R_{1,3}(x) = \frac{1 - \frac{1}{4}x}{1 + \frac{3}{4}x + \frac{1}{4}x^2 + \frac{1}{24}x^3}.$$

Show all the curves in one figure for the interval [0, 6]. Compare.
