King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 427, Number Theory, Term 181

Instructor: Ibrahim Al-Rasasi

Title: Math 427, Number Theory

Credit: 3-0-3

- **Textbook:** An Introduction to the Theory of Numbers, by Niven, Zuckerman, and Montgomery, 5th edition, Wiley & Sons, 1991.
- **References:** You may use any book on elementary/introductory number theory that is available in KFUPM library.

Description: This is a first course in number theory. It will cover the fundamental concepts of number theory and some applications. Main topics covered: Divisibility, Primes, Congruences, Fermat's, Euler's and Wilson's theorem, Pseudoprimes and Carmichael numbers, solution of polynomial congruences, Primitive roots, Quadratic residues and quadratic reciprocity law, Arithmetic functions, Perfect numbers, Pythagorean triangles, Diophantine equations, and Cryptography.

Prerequisite: Math 210 or senior standing.

Learning Outcomes: Upon completion of this course, students should be able to

- 1. Prove some basic results in number theory
- 2. Solve questions about divisibility and primes both theoretically and computationally
- 3. Apply the theorems of Fermat, Euler, and Wilson in computing and/or proving some statements in number theory
- 4. Solve different types of congruences
- 5. Use the Chinese Remainder Theorem to solve systems of linear congruences in one variable
- 6. Find primitive roots modulo primes and prime powers
- 7. Use Quadratic Reciprocity Law in computing and proving some statements in number theory

- 8. Work with arithmetic functions both theoretically and computationally
- 9. Solve and prove questions about Pythagorean triples
- 10. Solve some types of Diophantine equations
- 11. Solve some problems on selected applications of number theory.

Grading Policy:

- Exam I: 20% (6th week: Tuesday, 6:00-8:00 pm.)
- Exam II: 20% (12th week: Tuesday, 6:00-8:00 pm.)
- Homework: 15%
- Project: 10%
- Final Exam: 35%

Office Hours:

- Office location: 5-326
- Office phone number: 1268
- Days & Time: UMTWR: 9:00-9:50 am (and by appointment)
- E-mail: irasasi@kfupm.edu.sa
- Resources: Check Blackboard.

Math 427 Syllabus (Term 181)

Week	Date	Sec.	Topics
1	Sep. 2-6,	1.1	Introduction
	2018	1.2	Divisibility (GCD, LCM)
2	Sep. 9-13	1.3	Primes (FTA)
		1.4	The Binomial Theorem; Fermat's Factorization Method
3	Sep. 16-20	5.1	The equation $ax + by = c$
		2.1	Congruences (properties, complete and reduced
			residue systems, Fermat's, Euler's and Wilson's
			Theorems, Pseudoprimes and Carmichael numbers)
Sunday, September 23, 2018: National Day Holiday			
4	Sep. 23-27	2.1	Continued
		2.2	Solutions of congruences
Saturday, September 29, 2018: a Normal Sunday Class			
5	Sep. 30-	2.3	The Chinese Remainder Theorem
	Oct. 4		
Exam I: Tuesday, Oct. 9, 2018; 6:00- 8:00 pm.			
6	Oct. 7-11		Cryptography (Handout)
7	Oct. 14-18		Cryptography
		2.6	Prime Power Moduli
8	Oct. 21-25	2.7	Prime Modulus
9	Oct. 28-	2.8	Primitive Roots and Power Residues
	Nov. 1		
10	Nov. 4-8	3.1	Quadratic Residues
11	Nov. 11-	3.2	Quadratic Reciprocity
	15	3.3	Jacobi Symbol (Optional)
Exam II: Tuesday, Nov. 20, 2018; 6:00- 8:00 pm.			
12	Nov. 18-	4.1	Greatest Integer Function
	22	4.2	Arithmetic Functions and Perfect Numbers
13	Nov. 25-	4.2	Continued
	29	4.3	The Mobius Inversion Formula
14	Dec. 2-6	5.3	Pythagorean Triangles
			Diophantine Equations (Handout)
15	Dec. 9-13		Diophantine Equations
Final Exam: Saturday, Dec. 15, 2018; 7:00- 10:00 pm.			