King Fahd University of Petroleum & Minerals
Department of Mathematics & Statistics
Math 427, Final Exam, Term 181
Saturday, Dec. 15, 2018

Part | (100 points)

1.

[8 points] Find all positive integers x and y such that (x,y) = 6 and
[x,y] = 72. You may assume that x > y.

[10 points] Find the last three digits from the right of the number
61000

. [8 points] Solve the polynomial congruence x° + x + 1 = 0 mod 35.

[8 points] In an RSA cipher, n = 18556567 and ¢p(n) = 18547936.
Find the prime factors of n.

. [6 points] Find the quadratic residues modulo 13.

[10 points] Find all integers n = 1 that satisfy the equation [[\/ﬁ]] =

[[\/n + 1]].
[14 points] Find all primes p > 5 for which the congruence x? + 45 =
0 mod p is solvable.

. [14 points] Find all primitive Pythagorean triples (x, y, z), with y even,

in which x is a perfect cube.

. [12 points]

p(d)
az ’
b. Let f be an arithmetic function. If Y4, df (d) = n?, then find

f.

a. Find the sum Y4,

10. [10 points] Find the integer solutions of x? — y? = 6y + 6.



Part Il (75 points)

11. [15 points] Prove that 396|n3° — 1 for all integers n such that
(n,396) = 1.

12. [12 points] Let p > 2 be a prime number. Prove that a is a
quadratic residue modulo p if and only if a is a quadratic residue
modulo p. ( a is the multiplicative inverse of a modulo p.)

. (n!)!
13. [13 points] Prove that

14. [20 points]
a. Prove that 2p* is a deficient number for any prime p > 5 and
any integer k > 1.
b. Classify the numbers 2 - 3k k> 1, as perfect, deficient, or
abundant.
15. [15 points] Let n be a positive integer such that p = 8n +
3and q = 4n + 1 are both primes. Prove that 2 is a primitive root
modulo p.

is an integer.

All the best,

Ibrahim Al-Rasasi



Solutions

Q# 1: As (x,y) = 6, then x = 6x; and y = 6y,, where (x{,y,) = 1.
Note also that under the assumption x > y, we have x; > y;. Now,

[x,y] =72 = 6[x1,y,] =72=x,y, = 12.

Since x; > y; and (x1,y,) = 1, then this implies that (x4, y;) = (12,1),
(4,3) and hence the solutions are

(x,y) = (72,6),(24,18).

Q# 2: Let x = 61990, Note that 1000 = 8- 125. Clearly x = 0 mod 8. By
Euler's theorem, 69125 =1 1mod 125;i.e.,6°° = 1mod 125 and
hence 61990 = 1 mod 125,0r x = 1 mod 125. Next we solve the
system:

{ x = 0mod 8
x =1 mod 125

The first congruence gives x = 8k. The second congruence gives

8k=1=126mod 125 =>4k = 63 = 188 mod 125>k
= 47 mod 125.

Thus, x =8(47 4+ 1251) = 376 + 1000[,0or x = 376 mod 1000. So
the number 61999 ends with 376 (at the right).

Q# 3: The congruence x> + x + 1 = 0 mod 35 is equivalent to the
system

{x5+x+150m0d5
x> +x+1=0mod?7



The first congruence has one solution x = 2 mod 5 and the second
congruence has two solutions x = 2, —3 mod 7. This leads to the linear
systems

{xEZmodS {x525—3m0d5
x = 2mod7

The solutions of these linear systems are x =2 mod 35,x =
—3 mod 35 respectively. Thus, the solutions of the congruence x° +
x+1=0mod 35 arex = —3,2 mod 35.

Q#4:n = pq, n = 18556567, ¢p(n) = 18547936. We have
p+gq=n—¢n)+1=28632

p—q=+(p+q)?—4n = V285156 = 534

Adding, we get 2p = 9166 and hence p = 4583. Substituting in either
equation, we get g = 4049. Son = 4049 x 4583.

Q# 5: The quadratic residues modulo 13 are

{12,22,32,42,52,6%} =, 413 11,3,4,9,10,12} =,,,,4 13 {1, £3, +4}.

Q# 6: Let k = 1 be an integer and let [[\/ﬁ]] =k Thenk<vVn<k+1
and hence

k? <n< (k+1)>2
This implies that (Where does n + 1 lie?)
k2<n<n+1<((k+1)>2

Now we consider two cases:



Casel:n + 1isasquare. In this case we musthaven + 1 = (k + 1)? and
hence

[Vn+1] =k +1+# k= [Vn]
Case ll: n + 1 is not a square. In this case, we have
k2<n<n+1<(k+1)>
This implies that
k<vn<vn+1<k+1
and hence [[\/ﬁ]] = [[\/m]]

We conclude that [[\/ﬁ]] = [[\/n + 1]] when n = m? — 1, where m is a
positive integer.

Q# 7: Let p > 5 be a prime. Note that (p, —45) = 1. The congruence
x2 + 45 = 0 mod p is solvable if and only if (%‘5) =1.As —45=—-1"

B ORE-RE-o

(—_1) _{ 1 if p = 1mod4
p ) =1 if p=3mod4.

Now

5 . . .
Next, we compute (;) We use the quadratic reciprocity law and the

properties of Legendre symbol:

(E) B (B) _ { 1ifp=14mod5
p) QRL\5) T |-1if p = 2,3mod5.



Now, (*) implies that (%45) = 1if and only if

)-6-+G)-6) -

The first case holds when

{p = 1mod4 {p = 1mod4
p = 1mod5”’ p = 4mod5

This leads to p = 1,9 mod 20. The second case holds when

{p = —1mod4 {p = —1 = 3mod4
p = 2mod5 ’ p = 3mod5

This leads to p = 7,3 mod 20.

Thus, if p > 5, the given congruence is solvable if and only if p =
1,3,7,9 mod 20.

Q# 8: If (x,y, z) is primitive Pythagorean triple, with y even, then
x =1%—5%y=2rs,z=1?%+5?

where r and s are positive integers of opposite parity, r > s, and
(r,s) = 1. If x is a perfect cube, then there is a positive integer u such
that x = u3, or,r? — s? = u3. This implies that

ud =@ —95)r +5s).

Since (r — s,r + s) = 1 (left for you to check), then there are positive
integers m and n such that

r—s=m3, r+s=nd,

This implies that m and n are odd, n > m, and (m,n) = 1. Solving, we
get



Thus, the required triples are (x, y, z), where

. 5 n® —mbd , 5, n®+m°
xX=rc—s“=(mn)’,y=2rsS=———,Z2=1r°+85°"=———

2 2

where m and n are positive odd integers, n > m,and (m,n) = 1,
Note: If we take n = 3 and m = 1, we get the solution

(x,vy,z) = (27,364, 365).

Q# 9:
d
Part (a): Let F(n) = Eqjn a5 Then F(1) = 1.

: 1 L : :
Since 4 and g(n) =— are multiplicative functions, then F is a

multiplicative function. We thus start by computing F at a prime power
p* (p is prime and k > 1 an integer):

d k : 1
F('p")=z nd) _ ) _ 1

dlpk d? i=zo p* p?

Now if n = H{zlpiai, then

F(n)=1_[: F(p/") = 1_[ <1——>—H(1—p12).

pln

Part (b): If Ygpn df (d) = n?, then by Mobius Inversion Formula, we get

nf() = Sapi(@ - (2) = n? Lo AL

Using Part (a), we get



f(n)=n-1_[<1—piz>.

pin

Since 1 — p—lz = (1 — %) (1 + %), then we get

F = o[ ] (1 +%)

pin

Q# 10: Completing the square in y, we get
(y +3)% —x? = 3.
Factoring, we obtain
y+3—-x)(y+3+x)=3.
This gives the following four possibilities:

{y+3—x=i1,i3
y+3+x=43%1

Solving the four systems, we get the following four solutions

(X, y) = (_1! _5)! (_11 _1)1 (1! —5), (11 _1)

Q# 11: Note first that 396 = 4-9-11.1f (n,396) = 1, then (n,4) =
(n,9) = (n,11) = 1. By using Euler’s theorem, we get

2 15th power 30
n“=1mod 4 ——— n°* =1mod 4

6 5th power 30
n°=1mod 9 ———— n°* =1 mod?9

3rd
n10 = 1 mod 11 —s 130 = 1 mod 11



This implies n3° = 1 mod[4,9,11], or n3° = 1 mod 396, and hence
396[n3° — 1.

Q# 12: Note first that aa = 1 mod p. From the properties of Legendre

symbol, we get
( ) (1>
p p/

This implies that

The proof proceeds as follows:

] def /a (x) /a def _
atsq.r.modp(:(;)zl@ (E>=1=) ais q.r.mod p.

Q# 13: Let p be a prime. To show that (n))!/(n)™ V' is an integer, it is

(nl) theny = 0.

enough to show that if p”|| L

Let a, and f, be nonnegative integers such that p“r||(n!)! and
pPr||(n) @D Then

ap =22 5] By = 22— 11| 5]
As [x][y] < [xy] for x = 0and y = 0, then
. , !
(- D! n/p] = [(n — DI[n/p'] < HZ—]]

This implies that



R B =

Now as p“P‘ﬁP”(n!)!/(n!)(”‘l)! and a, — By = 0, then % is an
integer.
Q# 14

Part (a): We have to show that 0(2p*) < 4p*.Ask > 1 and p = 5, then
(2,p*) = 1 and so

1
o(2p*) = a(2)a(p*) =3 R
<3pk-——=pk. ——
Sincep25>4,then%<4as
3p
pTl<4<=>3p<4p—4<=>4<p

We conclude that o(2p*) < 4p* and hence 2p* is a deficient number
for any prime p = 5 and any integer k > 1.

Part (b): Note first that when k = 1, then 6 is a perfect number (g(6) =
12 =2-6.) Assume k > 2. As (2,3%) = 1, then

3k+1 —1 1-— (3k1+1)
a(2-3%) = g(2)a(3%) = 3 ? — 3.3k+1. :

S5 2 (1) =432 (1 5k)




Note that

1 1 26
<—>=1-

k+1 3
k22239233 =27= 0 <— =T 2 5

This implies
2.(1_ ! )>2.§=E> L
8 3k+1) 78 27 12
We then conclude that o(2 - 3%) > 4 - 3¥ and so 2 - 3% is abundant when
k = 2.

Q# 15: Note first that g = pT_l. Let h = ord,(2). Then h|p — 1, or h|2q.
Thus the possible values of h are
h=1,2,q,2q.
If h = 1, then 2 = 1 mod p and hence p|1, which is not possible.
If h = 2, then 22 = 1 mod p and hence p|3. This implies that p = 3,

which is not possible(n = 1=>p =8n+3 > 11.)

p—1
If h = q,then 29 = 1 mod p or 2 2 = 1 mod p. By Euler’s criterion, we

get
(5) = 1mod
—| = 1 mod p.
p

This implies that (g) =1 and hence p = 1,7 mod 8, which is not
possible since p = 8n + 3 = 3 mod 8.

We must thenhave h = 2q = p — 1;i.e, 0rd,(2) = p — 1 = ¢(p) and
so 2 is a primitive root modulo p.






