King Fahd University of Petroleum & Minerals

Department of Mathematics & Statistics

Math 427, Exam II, Term 181

Part I (70 points)

- **1.** [8 points] Show that $n = 2465 = 5 \cdot 17 \cdot 29$ is a Carmichael number.
- **2. [10 points]** Solve $\phi(n) = 8$ in positive integers.
- **3. [10 points]** Find the smallest three positive and consecutive integers greater than 10 that are divisible respectively by 9, 10, and 11.
- 4. [10 points] Solve the polynomial congruence

$$x^3 + 3x + 1 \equiv 0 \mod 5^3.$$

- **5. [10 points]** Decide if Mersenne number $M_{23} = 2^{23} 1$ is prime or composite.
- 6. [14 points]
 - a. Show that 2 is a primitive root modulo 13.
 - b. Find a reduced residue system modulo 13 consisting entirely of powers of some integer.
 - c. Find all primitive roots modulo 13.
 - d. Solve the congruence $9 \cdot 7^x \equiv 5 \mod{13}$ in positive integers.
- **7. [8 points]** Decipher the message "QJVROU" if it is enciphered using the affine cipher $C \equiv 15P + 1 \mod 26$.

Part II (30 points)

- **8.** [10 points] Prove that if g is a primitive root modulo m > 1, then \bar{g} is also a primitive root modulo m. [\bar{g} is the multiplicative inverse of g modulo m.]
- **9. [10 points]** Let p > 2 be a prime. Prove that -1 is a 6th power residue modulo p if and only if $p \equiv 1, 5 \mod 12$.

10. [10 points] Prove that if n + 2 is prime, then $4[(n-1)! + 1] + n \equiv 0 \mod (n+2).$

All the best,

Ibrahim Al-Rasasi

А	В	С	D	Е	F	G	Н	1	J	К	L	Μ
00	01	02	03	04	05	06	07	08	09	10	11	12

Ν	0	Р	Q	R	S	Т	U	V	W	Х	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Solutions

Q1: Let *a* be an integer such that (a, n) = 1. To show that $n = 2465 = 5 \cdot 17 \cdot 29$ is a Carmichael number, we need to show that $a^{n-1} \equiv 1 \mod n$.

Since (a, n) = 1, then (a, 5) = (a, 17) = (a, 29) = 1. By using Fermat's theorem and noticing that

$$n - 1 = 2464 = 4 \cdot 616 = 16 \cdot 154 = 28 \cdot 88$$
,

we get

$$a^{4} \equiv 1 \mod 5 \xrightarrow{616th \ power} a^{n-1} \equiv 1 \mod 5$$
$$a^{16} \equiv 1 \mod 17 \xrightarrow{154th \ power} a^{n-1} \equiv 1 \mod 17$$
$$a^{28} \equiv 1 \mod 29 \xrightarrow{88th \ power} a^{n-1} \equiv 1 \mod 29$$

This implies $a^{n-1} \equiv 1 \mod [5,17,29]$, or $a^{n-1} \equiv 1 \mod n$, and hence n = 2465 is a Carmichael number.

Q2: We start by investigating the possible properties of the solutions of the equation $\phi(n) = 8$.

Let p be a prime and n be a possible solution. If p|n, then $\phi(p)|\phi(n)$ and hence p - 1|8. This implies that $p \in \{2,3,5\}$. Further,

$$2^{\alpha} | n \stackrel{\phi}{\Rightarrow} 2^{\alpha - 1} | 8 \Rightarrow \alpha \le 4,$$

$$3^{\beta} \left| n \stackrel{\phi}{\Rightarrow} 3^{\beta - 1} \cdot 2 \right| 8 \Rightarrow \beta = 1,$$

$$5^{\gamma} \left| n \stackrel{\phi}{\Rightarrow} 5^{\gamma - 1} \cdot 4 \right| 8 \Rightarrow \gamma = 1.$$

Thus, a possible solution has the form

$$n = 2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma}, \qquad 0 \le \alpha \le 4, 0 \le \beta \le 1, 0 \le \gamma \le 1.$$

This gives $5 \times 2 \times 2 = 20$ candidates for possible solutions:

$$n = 1,3,5, \boxed{3\cdot 5}, 2,2\cdot 3,2\cdot 5, \boxed{2\cdot 3\cdot 5}, 2^2, 2^2 \cdot 3, \boxed{2^2 \cdot 5}, 2^2 \cdot 3 \cdot 5,$$
$$2^3, \boxed{2^3 \cdot 3}, 2^3 \cdot 5, 2^3 \cdot 3 \cdot 5, \boxed{2^4}, 2^4 \cdot 3, 2^4 \cdot 5, 2^4 \cdot 3 \cdot 5.$$

The solutions are the numbers in the boxes:

$$n = 15, 16, 20, 24, 30.$$

Q3: The problem reduces to solving the linear system

$$\begin{cases} x \equiv 0 \mod 9\\ x+1 \equiv 0 \mod 10\\ x+2 \equiv 0 \mod 11 \end{cases}$$

Solving, we get the unique solution $x \equiv 9 \mod 990$. Thus all integer solutions of the system are given by x = 9 + 990k, where k is an integer. The smallest positive solution greater than 10 is x = 999 (when k = 1). The three required integers are 999, 1000, 1001.

Q4: Let $f(x) = x^3 + 3x + 1$. Then $f'(x) = 3x^2 + 3$. The congruence $f(x) \equiv 0 \mod 5$ has two solutions $a_1 \equiv 1 \mod 5$ and $b_1 \equiv 2 \mod 5$.

Now $f'(b_1) \equiv 15 \equiv 0 \mod 5$. Then b_1 is a singular solution. Since $f(b_1) \equiv 15 \neq 0 \mod 5^2$, then b_1 cannot be lifted to a solution for the congruence $f(x) \equiv 0 \mod 5^2$, and hence it cannot be lifted to a solution for the congruence $f(x) \equiv 0 \mod 5^3$.

Next, $f'(a_1) \equiv 6 \neq 0 \mod 5$. Then a_1 is a nonsingular solution and hence it can be lifted indefinitely. With $a_1 = 1$,

$$a_2 \equiv a_1 - f(a_1)\overline{f'(a_1)} \mod 5^2$$
$$\equiv 1 - 5 \cdot 1 \equiv -4 \mod 5^2$$

With $a_2 = -4$,

$$a_3 \equiv a_2 - f(a_2)\overline{f'(a_2)} \mod 5^3$$
$$\equiv -4 - (-75) \cdot 1 \equiv 71 \mod 5^3.$$

Thus, there is one solution $x \equiv 71 \mod 5^3$ for the congruence $x^3 + 3x + 1 \equiv 0 \mod 5^3$.

Q5: Note first that $M_{23} = 2^{23} - 1 = 8388607$. If q is a prime such that $q|M_{23}$, then $q = 2k \cdot 23 + 1 = 46k + 1$ for some positive integer k. Further, if M_{23} is composite, then it has a prime divisor less than or equal to $\sqrt{M_{23}} \approx 2896.3$. So we check the values of k such that $46k + 1 \leq 2896$. These values are $k \leq 62$. If k = 1, then q = 47 and we find that $47|M_{23}$. In fact, $M_{23} = 47 \cdot 178481$. So, M_{23} is composite.

Q6:

Part a: Compute the powers of 2 modulo 13(to be used also later):

 $2^1 \equiv 2, 2^2 \equiv 4, 2^3 \equiv 8, 2^4 \equiv 3, 2^5 \equiv 6, 2^6 \equiv 12,$ $2^7 \equiv 11, 2^8 \equiv 9, 2^9 \equiv 5, 2^{10} \equiv 10, 2^{11} \equiv 7, 2^{12} \equiv 1$

Since the order of 2 modulo 13 is $12 = \phi(13)$, then 2 is a primitive root modulo 13.

<u>Part b:</u> The set $\{2, 2^2, 2^3, \dots, 2^{12}\}$ is a reduced residue system modulo 13 consisting entirely of powers of 2 (as can be readily observed from the calculation in part (a)).

<u>Part c:</u> In terms of the primitive root 2, all primitive roots modulo 13 are given by

$$\{2^i: (i, 12) = 1\} = \{2^i: i = 1, 5, 7, 11\} = \{2, 2^5, 2^7, 2^{11}\}.$$

Modulo 13, they are 2, 6, 7, 11.

Part d: From part (a), note that $5 \equiv 2^9$, $7 \equiv 2^{11}$, $9 \equiv 2^8 \mod 13$. Thus the congruence $9 \cdot 7^x \equiv 5 \mod 13$ becomes $2^{8+11x} \equiv 2^9 \mod 13$ which reduces to the linear congruence $8 + 11x \equiv 9 \mod 12$. This linear congruence has a unique solution $x \equiv 11 \mod 12$, which is the solution of the given congruence (we take the positive solutions: x = 11 + 12k, $k \ge 0$.)

Q7: To decipher, we solve for *P* in terms of *C*. The inverse of 15 modulo 26 is 7. So we get $P \equiv 7(C - 1)mod$ 26.

	Q	J	V	R	0	U
С	16	09	21	17	14	20
Ρ	01	04	10	08	13	03
	В	E	К	1	Ν	D

The original message is "BE KIND".

Q8: Since g is a primitive root modulo m, then $ord_m(g) = \phi(m)$ and also $g^{\phi(m)} \equiv 1 \mod m$. Let $ord_m(\bar{g}) = h$. Then $h|\phi(m)$ and hence $1 \leq h \leq \phi(m)$. We will show that $h = \phi(m)$.

Assume that $h < \phi(m)$. Since $g\bar{g} \equiv 1 \mod m$, then raising both sides to power h, we get $g^h \bar{g}^h \equiv 1 \mod m$ and hence $g^h \equiv 1 \mod m$; a contradiction to the minimality of $\phi(m)$ ($h < \phi(m)$ and $\phi(m)$ is the smallest positive integer such that $g^{\phi(m)} \equiv 1 \mod m$.) Thus $h = \phi(m)$ and so \bar{g} is a primitive root modulo m. **Q9:** The integer -1 is a 6th power residue modulo p > 2 (i.e., $x^6 \equiv -1 \mod p$ is solvable) if and only if

$$(-1)^{\frac{p-1}{(6,p-1)}} \equiv 1 \mod p \cdots \cdots (*)$$

Clearly, (*) does not hold when p = 3 (as $(-1)^1 \neq 1 \mod 3$.) Now, any prime p > 3 takes one of the following forms

$$p \equiv 1, 5, 7, or 11 \mod 12.$$

We check each form separately.

If $p \equiv 1 \mod 12$, then p = 1 + 12k where k > 0 is an integer. As (6, p - 1) = 6, then

$$(-1)^{\frac{p-1}{(6,p-1)}} \equiv (-1)^{2k} \equiv 1 \mod p.$$

If $p \equiv 5 \mod 12$, then p = 5 + 12k where $k \ge 0$ is an integer. As (6, p - 1) = 2, then

$$(-1)^{\frac{p-1}{(6,p-1)}} \equiv (-1)^{2+6k} \equiv 1 \mod p.$$

If $p \equiv 7 \mod 12$, then p = 7 + 12k where $k \ge 0$ is an integer. As (6, p - 1) = 6, then

$$(-1)^{\frac{p-1}{(6,p-1)}} \equiv (-1)^{1+2k} \equiv -1 \mod p.$$

If $p \equiv 11 \mod 12$, then p = 11 + 12k where $k \ge 0$ is an integer. As (6, p - 1) = 2, then

$$(-1)^{\frac{p-1}{(6,p-1)}} \equiv (-1)^{5+6k} \equiv -1 \mod p.$$

From the above discussion, we conclude that (*) holds (i.e., -1 is a 6th power residue modulo p) if and only if $p \equiv 1, 5 \mod 12$.

Q10: Since n + 2 is prime, then, by Wilson's Theorem,

 $(n+1)! \equiv -1 \equiv n+1 \mod (n+2).$

As (n + 1, n + 2) = 1, then

 $n! \equiv 1 \mod (n+2).$

Note that $n! \equiv n \cdot (n-1)! \equiv -2 \cdot (n-1)! \mod (n+2)$. Then we get

$$-2 \cdot (n-1)! \equiv 1 \mod (n+2).$$

Multiplying by -2, we get

$$4 \cdot (n-1)! \equiv -2 \equiv n \mod (n+2).$$

Adding 4 + n, we obtain

$$4 \cdot (n-1)! + 4 + n \equiv 2n + 4 \equiv 2(n+2) \mod (n+2),$$

or,

$$4[(n-1)!+1] + n \equiv 0 \mod (n+2).$$