
King Fahd University of Petroleum & Minerals 
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Math 427, Exam II, Term 181 

Part I (70 points) 

1. [8 points] Show that 𝑛 = 2465 = 5 ∙ 17 ∙ 29 is a Carmichael number.  

2. [10 points] Solve 𝜙(𝑛) = 8 in positive integers.    

3. [10 points] Find the smallest three positive and consecutive integers 

greater than 10 that are divisible respectively by 9, 10, and 11.  

4. [10 points] Solve the polynomial congruence   

𝑥3 + 3𝑥 + 1 ≡ 0 𝑚𝑜𝑑 53. 

5. [10 points] Decide if Mersenne number 𝑀23 = 2
23 − 1 is prime or 

composite.   

6. [14 points]  

a. Show that 2 is a primitive root modulo 13. 

b. Find a reduced residue system modulo 13 consisting entirely 

of powers of some integer. 

c. Find all primitive roots modulo 13. 

d. Solve the congruence 9 ∙ 7𝑥 ≡ 5 𝑚𝑜𝑑 13 in positive integers.  

7. [8 points] Decipher the message “QJVROU” if it is enciphered using 

the affine cipher 𝐶 ≡ 15𝑃 + 1 𝑚𝑜𝑑 26. 

 

Part II (30 points)  

8. [10 points] Prove that if 𝑔 is a primitive root modulo 𝑚 > 1, then �̅� is 

also a primitive root modulo 𝑚. [�̅� is the multiplicative inverse of 𝑔 

modulo 𝑚.] 

9. [10 points] Let 𝑝 > 2 be a prime. Prove that −1 is a 6th power residue 

modulo 𝑝 if and only if 𝑝 ≡ 1, 5 𝑚𝑜𝑑 12.  



10. [10 points] Prove that if 𝑛 + 2 is prime, then  

4[(𝑛 − 1)! + 1] + 𝑛 ≡ 0 𝑚𝑜𝑑 (𝑛 + 2). 

 

All the best, 

Ibrahim Al-Rasasi 
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Solutions 

 

Q1: Let 𝑎 be an integer such that (𝑎, 𝑛) = 1. To show that 𝑛 = 2465 =

5 ∙ 17 ∙ 29 is a Carmichael number, we need to show that 𝑎𝑛−1 ≡

1 𝑚𝑜𝑑 𝑛.  

Since (𝑎, 𝑛) = 1, then (𝑎, 5) = (𝑎, 17) = (𝑎, 29) = 1. By using Fermat’s 

theorem and noticing that 

𝑛 − 1 = 2464 = 4 ∙ 616 = 16 ∙ 154 = 28 ∙ 88, 

we get 

𝑎4 ≡ 1 𝑚𝑜𝑑 5
616𝑡ℎ 𝑝𝑜𝑤𝑒𝑟
⇒          𝑎𝑛−1 ≡ 1 𝑚𝑜𝑑 5  

𝑎16 ≡ 1 𝑚𝑜𝑑 17
154𝑡ℎ 𝑝𝑜𝑤𝑒𝑟
⇒          𝑎𝑛−1 ≡ 1 𝑚𝑜𝑑 17 

𝑎28 ≡ 1 𝑚𝑜𝑑 29
88𝑡ℎ 𝑝𝑜𝑤𝑒𝑟
⇒         𝑎𝑛−1 ≡ 1 𝑚𝑜𝑑 29 

This implies 𝑎𝑛−1 ≡ 1 𝑚𝑜𝑑[5,17,29], 𝑜𝑟 𝑎𝑛−1 ≡ 1 𝑚𝑜𝑑 𝑛, and hence 

𝑛 = 2465 is a Carmichael number.  

 

Q2: We start by investigating the possible properties of the solutions of 

the equation 𝜙(𝑛) = 8.  

Let 𝑝 be a prime and 𝑛 be a possible solution. If 𝑝|𝑛, then 𝜙(𝑝)|𝜙(𝑛) and 

hence 𝑝 − 1|8. This implies that 𝑝 ∈ {2,3,5}. Further,  

2𝛼|𝑛
𝜙
⇒ 2𝛼−1|8 ⇒ 𝛼 ≤ 4, 

3𝛽 |𝑛
𝜙
⇒ 3𝛽−1 ∙ 2| 8 ⇒ 𝛽 = 1, 

5𝛾 |𝑛
𝜙
⇒ 5𝛾−1 ∙ 4| 8 ⇒ 𝛾 = 1. 



Thus, a possible solution has the form 

𝑛 = 2𝛼 ∙ 3𝛽 ∙ 5𝛾 , 0 ≤ 𝛼 ≤ 4, 0 ≤ 𝛽 ≤ 1, 0 ≤ 𝛾 ≤ 1. 

This gives 5 × 2 × 2 = 20 candidates for possible solutions: 

𝑛 = 1,3,5, 3 ∙ 5 , 2,2 ∙ 3,2 ∙ 5, 2 ∙ 3 ∙ 5 , 22, 22 ∙ 3, 22 ∙ 5 , 22 ∙ 3 ∙ 5, 

23, 23 ∙ 3 , 23 ∙ 5, 23 ∙ 3 ∙ 5, 24 , 24 ∙ 3, 24 ∙ 5, 24 ∙ 3 ∙ 5. 

The solutions are the numbers in the boxes: 

𝑛 = 15, 16, 20, 24, 30. 

 

Q3: The problem reduces to solving the linear system 

{
𝑥 ≡ 0 𝑚𝑜𝑑 9

𝑥 + 1 ≡ 0 𝑚𝑜𝑑 10
𝑥 + 2 ≡ 0 𝑚𝑜𝑑 11

 

Solving, we get the unique solution 𝑥 ≡ 9 𝑚𝑜𝑑 990. Thus all integer 

solutions of the system are given by 𝑥 = 9 + 990𝑘, where 𝑘 is an 

integer. The smallest positive solution greater than 10 is 𝑥 = 999  (when 

𝑘 = 1). The three required integers are 999, 1000, 1001.  

 

Q4: Let 𝑓(𝑥) = 𝑥3 + 3𝑥 + 1. Then 𝑓′(𝑥) = 3𝑥2 + 3. The congruence 

𝑓(𝑥) ≡ 0𝑚𝑜𝑑 5 has two solutions 𝑎1 ≡ 1 𝑚𝑜𝑑 5 𝑎𝑛𝑑 𝑏1 ≡ 2 𝑚𝑜𝑑 5.  

Now 𝑓′(𝑏1) ≡ 15 ≡ 0 𝑚𝑜𝑑 5.  Then 𝑏1 is a singular solution. Since 

𝑓(𝑏1) ≡ 15 ≠ 0 𝑚𝑜𝑑 5
2, then 𝑏1 cannot be lifted to a solution for the 

congruence 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 52, and hence it cannot be lifted to a solution 

for the congruence 𝑓(𝑥) ≡ 0 𝑚𝑜𝑑 53.    

Next, 𝑓′(𝑎1) ≡ 6 ≠ 0 𝑚𝑜𝑑 5. Then 𝑎1 is a nonsingular solution and 

hence it can be lifted indefinitely. With 𝑎1 = 1, 



𝑎2 ≡ 𝑎1 − 𝑓(𝑎1)𝑓
′(𝑎1)̅̅ ̅̅ ̅̅ ̅̅  𝑚𝑜𝑑 52 

≡ 1 − 5 ∙ 1 ≡ −4 𝑚𝑜𝑑 52 

With 𝑎2 = −4,  

𝑎3 ≡ 𝑎2 − 𝑓(𝑎2)𝑓
′(𝑎2)̅̅ ̅̅ ̅̅ ̅̅  𝑚𝑜𝑑 53 

≡ −4 − (−75) ∙ 1 ≡ 71 𝑚𝑜𝑑 53. 

Thus, there is one solution 𝑥 ≡ 71 𝑚𝑜𝑑 53 for the congruence 𝑥3 +

3𝑥 + 1 ≡ 0 𝑚𝑜𝑑 53.  

 

Q5: Note first that 𝑀23 = 2
23 − 1 = 8388607. If 𝑞 is a prime such that 

𝑞|𝑀23, then 𝑞 = 2𝑘 ∙ 23 + 1 = 46𝑘 + 1 for some positive integer 𝑘. 

Further, if 𝑀23 is composite, then it has a prime divisor less than or equal 

to √𝑀23 ≈ 2896.3. So we check the values of 𝑘 such that 46𝑘 + 1 ≤

2896. These values are 𝑘 ≤ 62. If 𝑘 = 1, then 𝑞 = 47 and we find that 

47|𝑀23. In fact, 𝑀23 = 47 ∙ 178481. So, 𝑀23 is composite.    

Q6:  

Part a: Compute the powers of 2 modulo 13(to be used also later): 

21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 3, 25 ≡ 6, 26 ≡ 12, 

27 ≡ 11, 28 ≡ 9, 29 ≡ 5, 210 ≡ 10, 211 ≡ 7, 212 ≡ 1 

Since the order of 2 modulo 13 is 12 = 𝜙(13), then 2 is a primitive root 

modulo 13.  

Part b: The set {2, 22, 23,⋯ , 212} is a reduced residue system modulo 13 

consisting entirely of powers of 2 (as can be readily observed from the 

calculation in part (a)).  

Part c: In terms of the primitive root 2, all primitive roots modulo 13 are 

given by 



{2𝑖: (𝑖, 12) = 1} = {2𝑖: 𝑖 = 1,5,7,11} = {2, 25, 27, 211}. 

Modulo 13, they are 2, 6, 7, 11.  

Part d: From part (a), note that 5 ≡ 29, 7 ≡ 211, 9 ≡ 28 𝑚𝑜𝑑 13. Thus 

the congruence 9 ∙ 7𝑥 ≡ 5 𝑚𝑜𝑑 13 becomes 28+11𝑥 ≡ 29 𝑚𝑜𝑑 13 

which reduces to the linear congruence 8 + 11𝑥 ≡ 9 𝑚𝑜𝑑 12. This linear 

congruence has a unique solution 𝑥 ≡ 11 𝑚𝑜𝑑 12, which is the solution 

of the given congruence (we take the positive solutions: 𝑥 = 11 +

12𝑘, 𝑘 ≥ 0.)  

 

Q7: To decipher, we solve for 𝑃 in terms of 𝐶. The inverse of 15 modulo 

26 is 7. So we get 𝑃 ≡ 7(𝐶 − 1)𝑚𝑜𝑑 26. 

 Q J V R O U 

C 16 09 21 17 14 20 

P 01 04 10 08 13 03 

 B E K I N D 

 

The original message is “BE KIND”. 

 

Q8: Since 𝑔 is a primitive root modulo 𝑚, then 𝑜𝑟𝑑𝑚(𝑔) = 𝜙(𝑚) and 

also 𝑔𝜙(𝑚) ≡ 1 𝑚𝑜𝑑 𝑚. Let 𝑜𝑟𝑑𝑚(�̅�) = ℎ. Then ℎ|𝜙(𝑚) and hence 1 ≤

ℎ ≤ 𝜙(𝑚). We will show that ℎ = 𝜙(𝑚).  

Assume that ℎ < 𝜙(𝑚). Since 𝑔�̅� ≡ 1𝑚𝑜𝑑 𝑚, then raising both sides to 

power ℎ, we get 𝑔ℎ�̅�ℎ ≡ 1 𝑚𝑜𝑑 𝑚 and hence 𝑔ℎ ≡ 1 𝑚𝑜𝑑 𝑚; a 

contradiction to the minimality of 𝜙(𝑚) (ℎ < 𝜙(𝑚) and 𝜙(𝑚) is the 

smallest positive integer such that 𝑔𝜙(𝑚) ≡ 1 𝑚𝑜𝑑 𝑚. ) Thus ℎ = 𝜙(𝑚) 

and so 𝑔 ̅is a primitive root modulo 𝑚.  



 

Q9: The integer −1 is a 6th power residue modulo 𝑝 > 2 (i.e., 𝑥6 ≡

−1 𝑚𝑜𝑑 𝑝 is solvable) if and only if  

(−1)
𝑝−1
(6,𝑝−1)  ≡ 1 𝑚𝑜𝑑 𝑝 ⋯⋯(∗) 

Clearly, (∗) does not hold when 𝑝 = 3 (𝑎𝑠 (−1)1 ≠ 1 𝑚𝑜𝑑 3. ) Now, any 

prime 𝑝 > 3 takes one of the following forms  

𝑝 ≡ 1, 5, 7, 𝑜𝑟 11 𝑚𝑜𝑑 12. 

We check each form separately. 

If 𝑝 ≡ 1 𝑚𝑜𝑑 12, then 𝑝 = 1 + 12𝑘 where 𝑘 > 0 is an integer. As 

(6, 𝑝 − 1) = 6, then 

(−1)
𝑝−1
(6,𝑝−1)  ≡ (−1)2𝑘 ≡ 1 𝑚𝑜𝑑 𝑝.  

If 𝑝 ≡ 5 𝑚𝑜𝑑 12, then 𝑝 = 5 + 12𝑘 where 𝑘 ≥ 0 is an integer. As 

(6, 𝑝 − 1) = 2, then 

(−1)
𝑝−1
(6,𝑝−1)  ≡ (−1)2+6𝑘 ≡ 1 𝑚𝑜𝑑 𝑝.  

If 𝑝 ≡ 7 𝑚𝑜𝑑 12, then 𝑝 = 7 + 12𝑘 where 𝑘 ≥ 0 is an integer. As 

(6, 𝑝 − 1) = 6, then 

(−1)
𝑝−1
(6,𝑝−1)  ≡ (−1)1+2𝑘 ≡ −1 𝑚𝑜𝑑 𝑝.  

If 𝑝 ≡ 11 𝑚𝑜𝑑 12, then 𝑝 = 11 + 12𝑘 where 𝑘 ≥ 0 is an integer. As 

(6, 𝑝 − 1) = 2, then 

(−1)
𝑝−1
(6,𝑝−1)  ≡ (−1)5+6𝑘 ≡ −1 𝑚𝑜𝑑 𝑝.  

From the above discussion, we conclude that (∗) holds (i.e., −1 is a 6th 

power residue modulo 𝑝) if and only if 𝑝 ≡ 1, 5 𝑚𝑜𝑑 12.  



 

Q10: Since 𝑛 + 2 is prime, then, by Wilson’s Theorem, 

(𝑛 + 1)! ≡ −1 ≡ 𝑛 + 1 𝑚𝑜𝑑 (𝑛 + 2). 

As (𝑛 + 1, 𝑛 + 2) = 1, then 

𝑛! ≡ 1 𝑚𝑜𝑑 (𝑛 + 2). 

Note that 𝑛! ≡ 𝑛 ∙ (𝑛 − 1)! ≡ −2 ∙ (𝑛 − 1)!𝑚𝑜𝑑 (𝑛 + 2). Then we get 

−2 ∙ (𝑛 − 1)! ≡ 1 𝑚𝑜𝑑 (𝑛 + 2). 

Multiplying by −2, we get 

4 ∙ (𝑛 − 1)! ≡ −2 ≡ 𝑛 𝑚𝑜𝑑 (𝑛 + 2). 

Adding 4 + 𝑛, we obtain 

4 ∙ (𝑛 − 1)! + 4 + 𝑛 ≡ 2𝑛 + 4 ≡ 2(𝑛 + 2) 𝑚𝑜𝑑 (𝑛 + 2), 

or, 

4[(𝑛 − 1)! + 1] + 𝑛 ≡ 0 𝑚𝑜𝑑 (𝑛 + 2). 


