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Math 427, Exam I, Term 181 

Part I (50 points)  

1. [10 points] Find (6327, 962) and express it as a linear combination of 

6327 and 962.  

2. [10 points] Let 𝑛 ≥ 3 be an integer and let 𝑎𝑛 = (𝑛
2

) 𝑎𝑛𝑑 𝑏𝑛 = (𝑛
3

). 

Find (𝑎𝑛, 𝑏𝑛).  

3. [10 points] Use Fermat’s factorization method to find, if possible, two 

nontrivial factors of the number 25273. 

4. [10 points] Find all integer solutions (𝑥, 𝑦) of the equation 13𝑥 +

7𝑦 = 2 such that 3|𝑥 𝑎𝑛𝑑 5|𝑦.  

5. [10 points] Find the remainder when Fermat number 𝐹100 = 22100
+

1 is divided by 11.  

 

Part II (50 points)  

6. [10 points] Let 𝑎, 𝑏, 𝑐 be positive integers. Prove that 

𝑎 |𝑏𝑐 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 
𝑎

(𝑎, 𝑏)
| 𝑐. 

7. [8 points] Prove that every prime of the form 5𝑘 + 1 is either of the 

form 20𝑙 + 1 or of the form 20𝑙 + 11.  

8. [10 points] Let 𝑎, 𝑏, 𝑐 be positive integers. Prove that 

([𝑎, 𝑏], [𝑎, 𝑐], [𝑏, 𝑐]) = [(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐)].  

9. [10 points] Let 𝑅 = {𝑟1, 𝑟2, ⋯ , 𝑟𝑚} 𝑎𝑛𝑑 𝑆 = {𝑠1, 𝑠2, ⋯ , 𝑠𝑛} be two 

complete residue systems modulo 𝑚 𝑎𝑛𝑑 𝑛, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. Let  

𝑇 = {𝑛𝑟𝑖 + 𝑚𝑠𝑗: 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛} 



Prove that if (𝑚, 𝑛) = 1, then the set 𝑇 is a complete residue system 

modulo 𝑚𝑛.   

10. [12 points] Let 𝑝 ≥ 3 be a prime number. Prove that 

(
3𝑝

2𝑝
) ≡ 3 𝑚𝑜𝑑 𝑝. 

 

All the best, 

Ibrahim Al-Rasasi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Solutions 

Q1: We apply the Euclidean algorithm:  

6327 = 962(6) + 555 

962 = 555(1) + 407 

555 = 407(1) + 148 

407 = 148(2) + 111 

148 = 111(1) + 37 

111 = 37(3) 

Thus (6327,962) = 37. To write the answer as a linear combination of 

6327 𝑎𝑛𝑑 962, we solve backward for the remainders: 

37 = (6327,962) = 148 − 111(1) = 148 − [407 − 148(2)] 

= 148(3) − 407 = [555 − 407(1)](3) − 407 = 555(3) − 407(4) 

= 555(3) − [962 − 555(1)](4) = 555(7) − 962(4) 

= [6327 − 962(6)](7) − 962(4) = 6327(7) − 962(46). 

Thus 

37 = (6327,962) = 6327(7) + 962(−46). 

 

Q2: Note first that 𝑎𝑛 =
𝑛(𝑛−1)

2
 𝑎𝑛𝑑 𝑏𝑛 =

𝑛(𝑛−1)(𝑛−2)

6
. Let 𝑔𝑛 = (𝑎𝑛, 𝑏𝑛). 

To avoid fractions, note that  

6𝑔𝑛 = (3𝑛(𝑛 − 1), 𝑛(𝑛 − 1)(𝑛 − 2)) = 𝑛(𝑛 − 1)(3, 𝑛 − 2). 

 

Now if 𝑛 = 3𝑘, 𝑘 ≥ 1, 𝑡ℎ𝑒𝑛 (3, 𝑛 − 2) = (3,3𝑘 − 2) = 1,  

if 𝑛 = 3𝑘 + 1, 𝑘 ≥ 1, 𝑡ℎ𝑒𝑛 (3, 𝑛 − 2) = (3,3𝑘 − 1) = 1, and 



if 𝑛 = 3𝑘 + 2, 𝑘 ≥ 1, 𝑡ℎ𝑒𝑛 (3, 𝑛 − 2) = (3,3𝑘) = 3.  

Thus 

𝑔𝑛 = {

𝑛(𝑛 − 1)

6
                        𝑖𝑓 𝑛 = 3𝑘 𝑜𝑟 𝑛 = 3𝑘 + 1 

𝑛(𝑛 − 1)

2
                                            𝑖𝑓 𝑛 = 3𝑘 + 2

 

Here 𝑘 ≥ 1 is an integer.  

 

Q3: Let 𝑛 = 25273. Then √𝑛 ≈ 158.975. Thus we start by taking 𝑥 =

159.  

𝑥 = 159 ⇒ 1592 − 𝑛 = 8(𝑛𝑜𝑡 𝑎 𝑠𝑞𝑢𝑎𝑟) 

𝑥 = 160 ⇒ 1602 − 𝑛 = 327(𝑛𝑜𝑡 𝑎 𝑠𝑞𝑢𝑎𝑟) 

𝑥 = 161 ⇒ 1612 − 𝑛 = 648(𝑛𝑜𝑡 𝑎 𝑠𝑞𝑢𝑎𝑟) 

𝑥 = 162 ⇒ 1622 − 𝑛 = 971(𝑛𝑜𝑡 𝑎 𝑠𝑞𝑢𝑎𝑟) 

𝑥 = 163 ⇒ 1632 − 𝑛 = 1296 = 362. 

Thus 

𝑛 = 1632 − 362 = (163 − 36)(163 + 36) = 127 ∙ 199. 

In fact, both factors 127 and 199 are primes and so we get a complete 

factorization. 

 

Q4: Since 3|𝑥 𝑎𝑛𝑑 5|𝑦, 𝑡ℎ𝑒𝑛 𝑥 = 3𝑧 𝑎𝑛𝑑 𝑦 = 5𝑤. The equation 

becomes 

39𝑧 + 35𝑤 = 2. 



As (39,35) = 1 divides 2, then the equation is solvable in integers. Using 

the Euclidean algorithm (three steps of division), we find that (𝑧, 𝑤) =

(18, −20) is a solution and hence the solutions are 

𝑧 = 18 + 35𝑡, 𝑤 = −20 − 39𝑡, 𝑡 ∈ ℤ. 

This implies that the required solutions are 

𝑥 = 54 + 105𝑡, 𝑤 = −100 − 195𝑡, 𝑡 ∈ ℤ. 

 

Q5: We need to find an integer 𝑟 such that 

𝐹100 = 22100
+ 1 ≡ 𝑟 𝑚𝑜𝑑 11, 0 ≤ 𝑟 ≤ 10. 

By Fermat’s Theorem, 

210 ≡ 1 𝑚𝑜𝑑 11. 

We divide 2100 𝑏𝑦 10. For this, note first that 

25 ≡ 2 𝑚𝑜𝑑10. 

This implies that 

2100 ≡ 220 ≡ 24 ≡ 6 𝑚𝑜𝑑10. 

Thus 2100 = 6 + 10𝑞, for some positive integer 𝑞. We get 

22100
= 210𝑞+6 = (210)𝑞 ∙ 26 ≡ 1𝑞 ∙ (−2) ≡ −2 𝑚𝑜𝑑 11 

This implies that 

𝐹100 ≡ −1 ≡ 10 𝑚𝑜𝑑 11. 

We conclude that the remainder when 𝐹100 is divided by 11 is 10.  

 

Q6: Let (𝑎, 𝑏) = 𝑔. Then (
𝑎

𝑔
,

𝑏

𝑔
) = 1.  



⇒: Assume 𝑎|𝑏𝑐. Then 𝑏𝑐 = 𝑎𝑘 for some positive integer 𝑘. Dividing by 

𝑔, we get 
𝑏

𝑔
𝑐 =

𝑎

𝑔
𝑘. Since 

𝑎

𝑔
|

𝑏

𝑔
𝑐 𝑎𝑛𝑑 (

𝑎

𝑔
,

𝑏

𝑔
) = 1, then 

𝑎

𝑔
|𝑐; 𝑖. 𝑒. ,

𝑎

(𝑎,𝑏)
| 𝑐.  

⇐: Assume 
𝑎

(𝑎,𝑏)
|𝑐. We also have (𝑎, 𝑏)|𝑏. Multiplying, we get  

𝑎

(𝑎, 𝑏)
∙ (𝑎, 𝑏)|𝑐𝑏; 𝑜𝑟 𝑎|𝑏𝑐. 

 

Q7: Any integer 𝑘 takes one of the following forms: 4𝑙, 4𝑙 + 1, 4𝑙 +

2, 𝑜𝑟 4𝑙 + 3. Thus any integer of the form 5𝑘 + 1 takes one of the 

following forms:  

5(4𝑙) + 1 = 20𝑙 + 1, 

5(4𝑙 + 1) + 1 = 20𝑙 + 6, 

5(4𝑙 + 2) + 1 = 20𝑙 + 11, 

5(4𝑙 + 3) + 1 = 20𝑙 + 16. 

Now 20𝑙 + 6 𝑎𝑛𝑑 20𝑙 + 16 are composite (divisible respectively by 2 

and 4.) Then any prime number of the form 5𝑘 + 1 will take one of the 

forms 20𝑙 + 1 𝑜𝑟 20𝑙 + 11.  

 

Q8: To prove equality, it is enough, by the Fundamental Theorem of 

Arithmetic, to show that each prime is raised to the same power in both 

sides. Let 𝑝 be a prime and let the powers of 𝑝 in 𝑎, 𝑏, 𝑎𝑛𝑑 𝑐 be 

𝛼, 𝛽, 𝑎𝑛𝑑 𝛾, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. Without loss of generality, we may assume 

𝛼 ≤ 𝛽 ≤ 𝛾.  

Now the powers of 𝑝 in [𝑎, 𝑏], [𝑎, 𝑐], 𝑎𝑛𝑑 [𝑏, 𝑐] are 

𝛽, 𝛾, 𝑎𝑛𝑑 𝛾, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. So the power of 𝑝 in ([𝑎, 𝑏], [𝑎, 𝑐], [𝑏, 𝑐]) is 𝛽. 



Also the powers of 𝑝 in (𝑎, 𝑏), (𝑎, 𝑐), 𝑎𝑛𝑑 (𝑏, 𝑐) are 

𝛼, 𝛼, 𝑎𝑛𝑑 𝛽, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. So the power of 𝑝 in [(𝑎, 𝑏), (𝑎, 𝑐), (𝑏, 𝑐)] is 

𝛽. Since the power of 𝑝 in both sides is the same, equality holds. 

 

Q9: The set 𝑇 contains 𝑚𝑛 elements. So to show that 𝑇 is a complete 

residue system modulo 𝑚𝑛, it is enough to show that no two distinct 

elements of 𝑇 are congruent modulo 𝑚𝑛.  

Assume two distinct elements of 𝑇 are congruent modulo 𝑚𝑛:  

𝑛𝑟𝑖 + 𝑚𝑠𝑗 ≡ 𝑛𝑟𝑘 + 𝑚𝑠𝑙  𝑚𝑜𝑑 𝑚𝑛 ⋯ ⋯ (∗) 

where 1 ≤ 𝑖, 𝑘 ≤ 𝜙(𝑚), 1 ≤ 𝑗, 𝑙 ≤ 𝜙(𝑛). Since 𝑚|𝑚𝑛, the last 

congruence reduces to 

𝑛𝑟𝑖 + 𝑚𝑠𝑗 ≡ 𝑛𝑟𝑘 + 𝑚𝑠𝑙  𝑚𝑜𝑑 𝑚 

or, 

𝑛𝑟𝑖 ≡ 𝑛𝑟𝑘  𝑚𝑜𝑑 𝑚 

As (𝑚, 𝑛) = 1, we get 𝑟𝑖 ≡ 𝑟𝑘  𝑚𝑜𝑑 𝑚. If 𝑖 ≠ 𝑘, we get a contradiction (𝑅 

is a complete residue system modulo 𝑚: no two different elements of 𝑅 

are congruent modulo 𝑚. ) So suppose that 𝑖 = 𝑘. Substituting in (∗) and 

simplifying, we get 𝑚𝑠𝑗 ≡ 𝑚𝑠𝑙  𝑚𝑜𝑑 𝑚𝑛. Cancelling 𝑚, we get 𝑠𝑗 ≡

𝑠𝑙  𝑚𝑜𝑑 𝑛. But since  𝑗 ≠ 𝑙 (as the two elements we started with are 

distinct and 𝑖 = 𝑘), we get a contradiction (𝑆 is a complete residue 

system modulo 𝑛: no two different elements of 𝑆 are congruent modulo 

𝑛. )  

Because of this contradiction, we conclude that no two distinct elements 

of 𝑇 are congruent modulo 𝑚𝑛 and hence 𝑇 is a complete residue system 

modulo 𝑚𝑛.  

 



 

Q10: Let 𝑝 ≥ 3 be prime. Note first that 

(
3𝑝

2𝑝
) =

(3𝑝)!

(2𝑝)! ∙ 𝑝!
=

(3𝑝)(3𝑝 − 1)(3𝑝 − 2) ⋯ (2𝑝 + 1)

𝑝!
 

=
3(3𝑝 − 1)(3𝑝 − 2) ⋯ (3𝑝 − (𝑝 − 1))

(𝑝 − 1)!
 

Avoiding fractions, we get 

(𝑝 − 1)! ∙ (
3𝑝

2𝑝
) = 3(3𝑝 − 1)(3𝑝 − 2) ⋯ (3𝑝 − (𝑝 − 1)). 

Now we compute modulo 𝑝: 

(𝑝 − 1)! ∙ (
3𝑝

2𝑝
) ≡ 3(−1)(−2) ⋯ (−(𝑝 − 1)) 𝑚𝑜𝑑 𝑝 

≡ 3 ∙ (𝑝 − 1)! 𝑚𝑜𝑑 𝑝.  

As (((𝑝 − 1)!, 𝑝) = 1, we can cancel (𝑝 − 1)! to obtain 

(
3𝑝

2𝑝
) ≡ 3 𝑚𝑜𝑑 𝑝. 

 

 

 


