King Fahd University of Petroleum & Minerals

Department of Mathematics & Statistics Math 372 Final Exam Semester 2018 (181)

Name:_____

Time Allowed: 180 Minutes

____ID#:_____Sec.

- Mobiles are not allowed in this exam.
- Write all steps clear.

Question #	Answer		
1/7			
2/8			
3/10			
4/15			
5/10			
6/10			
7/10			
8/10			
9/10			
10/10			
11/10			
12/10			
Total			
	Grand Total out of 120		

Q:1(7 points) Use Secant method to solve the equation x = cosx in the interval [0, $\pi/2$]

with initial guess $x_0 = 1$ and $x_1 = 0.5$ (find x_3)

Q:2(8 points) Approximate value of $\int_0^1 x e^{\sin x} dx$ using composite Simpson's rule with n = 6

Q:3 (10 points) Given $f(x) = \sin x$ on [0.5,1]

a) Analyze the round-off errors for the formula

$$f'(x_0) = \frac{1}{2h} \left[-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h) \right] + \frac{h^2}{3} f^{(3)}(z)$$

b) If the values of f are given in 4 decimal places, find the **optimal** h.

Q:4 (5+10 points)

a) Show that the initial-value problem has a unique solution

$$y' = 2y \ cost$$
, $0 \le t \le 2$, $y(0) = 2$

b) Use Runge-Kutta of order four to approximate the solution in part(a) (find w_2 with h = 0.5)

Q:5 (10 points) Use Gaussian elimination with scaled partial pivoting and four-digit rounding to solve the system

$$2.11x - 4.21y + 0.921z = 2.01,$$

$$4.01x + 10.2y - 1.12z = -3.09,$$

$$1.09x + 0.987y + .832z = 4.21$$

Q:6 (10 points) Using the data points, (0, 0), (1, -1), (3, 3) second order interpolating polynomial using Newton's divided difference interpolation

Q.7 (10 points) The following data are exponentially related $y = be^{ax}$

(1, 5.1), (1.25, 5.79), (1.5, 6.53), (1.75, 7.45), (2, 8.46).

By least squares approximation find a and b.

Q:8(10 points) The boundary-value problem

 $y'' = -(x+1)y' + 2y + (1-x^2)e^{-x}, \ 0 \le x \le 1, \qquad y(0) = -1, y(1) = 0, h = 0.2$

By using Linear Finite-Difference method write the problem in matrix form.

Q:9 (10 points) Solve by using simplex method Maximize $z = 5x_1 + 4x_2$

$$x_1 + x_2 \le 20$$

$$2x_1 + x_2 \le 35$$

$$-3x_1 + x_2 \le 12$$

and $x_1, x_2 \ge 0$

Q:10(10 points)

Write a MATLAB code that does the following:

a) Determine the linear least square polynomial for a set of data of the form

Х	1	2	3	4	5
У	1.3	3.5	4.2	5	7

b) Plot the set of data and its linear fit in the same figure window.

Q:11 (10 points) Write a MATLAB code to approximate the solution of the initial value problem

$$y' = y - t^2 + 1, \ 0 \le t \le 2, \qquad y(0) = 0.5$$

using Euler method with h = 0.2.

Also include the commands to plot the numerical solution and the exact solution $v = 1 + t^2 + 2t - 0.5e^t$

Q:12(10 points) Write a MATLAB code to approximate

$$\int_{3}^{6} x^3 \ln x \, dx$$

By using Composite Simpson's rule.

$$y''(x_i) = p(x_i)y'(x_i) + q(x_i)y(x_i) + r(x_i).$$

$$Aw = b, \text{ where} \qquad (11.19)$$

$$A = \begin{bmatrix} 2 + h^2q(x_1) & -1 + \frac{h}{2}p(x_1) & 0 & \cdots & 0 \\ -1 - \frac{h}{2}p(x_2) & 2 + h^2q(x_2) & -1 + \frac{h}{2}p(x_2) & \cdots & 0 \\ 0 & \cdots & 0 & \cdots & 0 & 0 \\ 0 & \cdots & 0 & 0 & \cdots & -1 + \frac{h}{2}p(x_{N-1}) \\ 0 & \cdots & 0 & 0 & \cdots & -1 - \frac{h}{2}p(x_N) & \cdots & 2 + h^2q(x_N) \end{bmatrix},$$

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_{N-1} \\ w_N \end{bmatrix}, \text{ and } b = \begin{bmatrix} -h^2r(x_1) + \left(1 + \frac{h}{2}p(x_1)\right)w_0 \\ -h^2r(x_2) \\ \vdots \\ -h^2r(x_{N-1}) \\ -h^2r(x_N) + \left(1 - \frac{h}{2}p(x_N)\right)w_{N+1} \end{bmatrix}.$$

$$y_i = a_1 x_i + a_0$$

,

 $a_{0} = \frac{\sum_{i=1}^{m} x_{i}^{2} \sum_{i=1}^{m} y_{i} - \sum_{i=1}^{m} x_{i} y_{i} \sum_{i=1}^{m} x_{i}}{m\left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}$

$$a_{1} = \frac{m \sum_{i=1}^{m} x_{i} y_{i} - \sum_{i=1}^{m} x_{i} \sum_{i=1}^{m} y_{i}}{m \left(\sum_{i=1}^{m} x_{i}^{2}\right) - \left(\sum_{i=1}^{m} x_{i}\right)^{2}}.$$

Runge-Kutta Order Four

$$w_0 = \alpha,$$

$$k_1 = hf(t_i, w_i),$$

$$k_2 = hf\left(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_1\right),$$

$$k_3 = hf\left(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_2\right),$$

$$k_4 = hf(t_{i+1}, w_i + k_3),$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$

for each i = 0, 1, ..., N - 1. This method has local truncation error $O(h^4)$, provided the