Write all steps clear.

Problem 1. (15 points)

First find Maclaurin expansions for $f(h) = \cos(h^2)$ and $g(h) = \ln(1+h)$ of order 8 and 4 respectively. Then experiment and find the order of approximation for their sum.

Problem 2. 20 points)

- a) Show that $g(x) = \frac{1}{3}xe^x$ has a unique fixed point on [-2, 0]
- b) Estimate the number of iterations required to achieve 10^{-6} accuracy (assuming $p_0 = \frac{1}{2}$).

Problem 3. (15 points)

- a) Use Bisection method to find a solution that is accurate to within 10^{-1} for $2x\cos(2x) = (1+x)^2$, for $-1 \le x \le 0$
- b) Let f(x) is continuous on the interval [a, b] and the minimum value of f is 2, what happens to the Bisection method?

Problem 4. (15 points)

a) Use Secant method to find a solution for

$$x - 0.8 - 0.2 \sin x = 0$$
, for $0 \le x \le \frac{\pi}{2}$, $(p_0 = 0, p_1 = \frac{\pi}{4}, \text{find } p_3)$

b) Use newton's method to approximate $\sqrt{2+\sqrt{2}}$, with $p_0 = 1.7$

Problem 5. (15 points)

- a) Construct the Lagrange interpolating polynomial that agrees with the following data (1, 1), (0, 1), and (-1, 3)
- b) If we add the point (k, 3), what values of k must be taken that the degree will stay the same.

Problem6. (20 points)

Write a MATALAB code to approximate the solution of the equation $sinx = e^{-x}$.

 $0 \le x \le 1$, by using Secant method with $p_0 = 0$, $p_1 = 0.5$ and possible error 0.01.