KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 225: FINAL EXAM, SEMESTER (181), DECEMBER 22, 2018

Time: 07:00 to 10:00 $\rm pm$

Name	:	 		
ID	:	Section	:	

Exercise	Points		
1	14		
2	14		
3	14		
4	14		
5	14		
6	14		
7	14		
8	14		
9	14		
10	14		
Total	140		

Exercise 1 (14 pts). Let

$$A = \left(\begin{array}{cc} 1 & 3\\ 3 & 1 \end{array}\right).$$

- (1) Find the matrix $\exp(tA)$ (exponential of tA), for $t \in \mathbb{R}$.
- (2) Solve the following initial value problem: X'(t) = AX(t) with $X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$, x(0) = 1 and = y(0) = 2.

3

Exercise 2 (14 pts). Let

$$A = \begin{pmatrix} 1 & 2\\ 2 & 1 \end{pmatrix}.$$

at $B^2 = A$

find a complex matrix B such that $B^2 = A$.

Exercise 3 (14 pts).

(1) Find the distance between the point $P_0 = (1,3)$ and the line L of equation y = 2x.

(2) Find the closest point Q of L to the point $P_0 = (1,3)$.

Exercise 4 (14 pts). Let $S = \{(x + y, x - y, x + 3y, x - 2y)^T : x, y \in \mathbb{R}\}.$ (1) Find an orthonormal basis of the subspace S of \mathbb{R}^4 .

(2) Find the closest vector \mathbf{p} of S to $\mathbf{w} = (1, 1, 1, 1)^T$.

Exercise 5 (14 pts). Find a QR-decomposition of the matrix

$$A = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{array}\right).$$

Exercise 6 (14 pts). Let $\mathcal{B}_0 = (1, x, x^2, x^3)$ be the standard basis of \mathbf{P}_3 . (1) Show that $\mathcal{B}_1 = (1, 2 + x, 2 + x + x^2, 2 + x + x^2 + x^3)$ is a basis of \mathbf{P}_3 .

(2) Find the transition matrix from \mathcal{B}_0 to \mathcal{B}_1 .

(3) Given any $p(x) = a + bx + cx^2 + dx^3$ in \mathbf{P}_3 , find the coordinates of p(x) with respect to the basis \mathcal{B}_1 .

Exercise 7 (14 pts). Let A be a real $n \times n$ -matrix such that $A^2 - 5A + 6I = \mathbf{O}$.

- (1) Show that A is invertible.
- (2) Use the equality (x 2) (x 3) = 1 to show that

$$\mathbb{R}^n = \operatorname{Ker}(A - 2I) \oplus \operatorname{Ker}(A - 3I).$$

(3) Is A diagonalizable?

Exercise 8 (14 pts). Find an orthogonal matrix that diagonalizes the symmetric matrix

$$A = \left(\begin{array}{rrr} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array} \right).$$

11

Exercise 9 (14 pts). Find the critical points of the function

$$f(x,y) = x^3 + 6xy + 3y^2 - 9x$$

and classify them as relative maxima, relative minima, or saddle points.

Exercise 10 (12 pts). Express the quadratic equation

$$5x^2 + 5y^2 + 26xy - 2x - 34y = 43$$

in the matrix form

$$\mathbf{x}^T A \mathbf{x} + \mathbf{K} \mathbf{x} + f = 0,$$

where $\mathbf{x}^T A \mathbf{x}$ is the associated quadratic form and \mathbf{K} is an appropriate matrix. Identify the conic section represented by the given equation.