KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 225: TEST 3, SEMESTER (181), DECEMBER 03, 2018

Time: 17:30 to 18:30

Name :

ID : Section :

Exercise	Points
1	12
2	12
3	12
4	12
5	12
Total	60

Exercise 1. Determine whether the following functions are linear Transformations. (a) $T : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, defined by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}x+y\\x-y\end{array}\right].$$

(b) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, defined by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}x^2\\y\end{array}\right].$$

Exercise 2. Let $L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear Transformation defined by

$$L(\mathbf{x}) = \left[\begin{array}{c} x_1 - x_2\\ 3x_2 - x_3 \end{array}\right],$$

where $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$

(1) Let S be the subspace of \mathbb{R}^3 spanned by \mathbf{e}_1 and \mathbf{e}_3 ; then find a basis of L(S).

(2) Find $\ker(L)$ and $\operatorname{Im}(L)$.

Exercise 3. Let $L : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the linear transformation defined by $L(\mathbf{x}) = (x+2y)\mathbf{b}_1 + (-2x+3y+z)\mathbf{b}_2$ for each $\mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$, where $\mathbf{b}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

- (1) Show that $(\mathbf{b}_1, \mathbf{b}_2)$ is a basis of \mathbb{R}^2 .
- (2) Find the matrix A representing L with respect to the ordered bases $\mathcal{B}_1 = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ and $\mathcal{B}_2 = (\mathbf{b}_1, \mathbf{b}_2)$.
- (3) Find the matrix *B* representing *L* with respect to the canonical basis $\mathcal{B}_1 = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ of \mathbb{R}^3 and the canonical basis $\mathcal{B} = (\mathbf{f}_1, \mathbf{f}_2)$ of \mathbb{R}^2 .

Exercise 4. Let $S = \{(2x - y, 2x - y, x - 3y)^T : x, y \in \mathbb{R}\}.$

- (1) Find an orthonormal basis of the vector space ${\cal S}$ (use Gram-Schmidt).
- (2) Find the closest vector \mathbf{p} of S to $\mathbf{w} = (2, 1, 2)^T$.

Exercise 5. Let

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ 3 & -1 & 1 \end{pmatrix}$$

- (1) Find the reduced row echelon form of A.
- (2) Find bases for NS(A) and CS(A).
- (3) Use (2) to find bases for $NS(A^T)$ and $CS(A^T)$.

7

_