KFUPM, DEPARTMENT OF MATHEMATICS AND STATISTICS

MATH 225: TEST 1, SEMESTER (181), SEPTEMBER 30, 2018

Time: 18:00 to 19:00

Name :

ID : Section :

Exercise	Points
1	12
2	12
3	12
4	12
5	12
Total	60

Exercise 1. Use back substitution to solve the linear system whose augmented matrix is given by

Exercise 2. Consider the matrix

$$A = \left(\begin{array}{rrrr} 1 & 1 & 2 \\ 2 & 5 & a \\ -1 & 1 & b \end{array}\right)$$

For what values of a and b will the system AX = O have infinitely many solutions?

Exercise 3. Consider the system AX = B, where

$$A = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right), \ B = \left(\begin{array}{c} 4 \\ 5 \end{array}\right)$$

Solve the system by transforming the corresponding augmented matrix to the reduced row echelon form.

Exercise 4. Let A be an $n \times n$ -matrix such that $A^2 = A - I$. (a) Find A^p , for p = 0, 1, 2, 3, 4, 5, 6. (**b**) Find A^p , for each positive integer p..

(c) Show that A is invertible and write A^{-1} as a function of A.

Exercise 5. Let A be the matrix given by

$$\left(\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array}\right)$$

Using elementary row operations, find A^{-1} and express A as a product of elementary matrices.

9