1. [16pts] (a) Prove that there are no positive real numbers x, y such that $\sqrt{x} + 2\sqrt{y} = \sqrt{x+4y}$.

(b) Prove that there are no integers a, b such that a < b and $2a + 1 \ge 2b$.

Solution. (a) Assume for contradiction that there are positive real numbers x, y such that $\sqrt{x} + 2\sqrt{y} = \sqrt{x+4y}$. Then $(\sqrt{x} + 2\sqrt{y})^2 = x + 4y$, i.e. $x + 4y + 4\sqrt{xy} = x + 4y$. Hence xy = 0, i.e. x = 0 or y = 0, a contradiction. \blacksquare (b) Suppose on the contrary that there are integers a, b such that a < b and $2a + 1 \ge 2b$. Then $0 < 2(b-a) \le 1$, which is impossible since 2(b-a) is an even integer and there are no even integers in the interval (0, 1]. \blacksquare

2. [24pts] (a) Prove that $2^n \ge (n+1)^2$ for each integer $n \ge 6$.

(b) A sequence $\{a_n\}_{n\in\mathbb{N}}$ is defined recursively by:

$$a_1 = 2, a_2 = 4, a_{n+2} = 5a_{n+1} - 6a_n$$
 (for $n \ge 1$).

Make a conjecture about a_n and then prove your claim.

Solution. (a) Let P(n) be the statement: $2^n \ge (n+1)^2$. Clearly P(6) is true $(2^6 = 64 > 36 = 6^2)$. Suppose P(k) is true for some integer $k \ge 6$ (i.e. $2^k \ge (k+1)^2$). We prove that P(k+1) is true (i.e. that $2^{k+1} \ge (k+2)^2$). We have $2^{k+1} = 2 \cdot 2^k \ge 2(k+1)^2$ (by induction hypothesis). If we prove that $2(k+1)^2 \ge (k+2)^2$, then we are done. We have $2(k+1)^2 - (k+2)^2 = k^2 - 2 \ge 0$ since $k \ge 6$, hence $2(k+1)^2 \ge (k+2)^2$, as required. \blacksquare (b) We have $a_3 = 5 \times 4 - 6 \times 2 = 2^3$, so we conjecture that $a_n = 2^n$ for each $n \ge 1$.

Let P(n) be the statement: $a_n = 2^n$. Clearly P(n) is true for n = 1, 2.

Let $k \ge 2$ be an integer and assume P(h) is true for all integers h such that $1 \le h \le k$ (we are using strong induction and assuming that $P(1), P(2), \ldots, P(k)$ are true statements).

We prove that P(k+1) is true.

We have

$$a_{k+1} = 5a_k - 6a_{k-1} = 5 \times 2^k - 6 \times 2^{k-1}$$
 (by induction hypothesis)
= $5 \times 2^k - 3 \times 2^k = 2^{k+1}$, as required.

3. [20pts] (a) Let \mathbb{R}^* denote the set of all nonzero real numbers. A relation R is defined on \mathbb{R}^* by

$$xRy$$
 iff $x + y \neq 0$.

Is R reflexive? symmetric? transitive? Justify your answers.

(b) In \mathbb{Z}_8 , express $[15^{11}] + [11^{15}]$ as [r] where $0 \le r \le 7$.

Solution. (a) For each nonzero real number x we have $x + x \neq 0$, hence xRx and so R is reflexive.

Suppose xRy for some nonzero real numbers x and y. Then $x + y \neq 0$, i.e. $y + x \neq 0$. Hence yRx and so R is symmetric.

R is not transitive: take x = 1, y = 2, z = -1. Then xRy and yRz but x Rz.

(b) We have $15 \equiv -1 \pmod{8}$ so $15^{11} \equiv -1 \pmod{8}$ Also $11 \equiv 3 \pmod{8}$, so $11^2 \equiv 9 \equiv 1 \pmod{8}$. We obtain $15^{11} + 11^{15} \equiv -1 + 11 \times (11^2)^7 \equiv 10 \equiv 2 \pmod{8}$. Hence $[15^{11}] + [11^{15}] = [2]$ (in \mathbb{Z}_8).

4. [20pts] (a) Prove that the function $f : \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$ given by $f(x) = \frac{x-3}{x-1}$ is a bijection and find its inverse function.

(b) For each of the following functions determine whether it is one-to-one or onto and justify your answers.

- (i) $f: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{Q}$ given by $f(x, y) = \frac{x}{y}$.
- (ii) $g: \mathbb{N} \times \mathbb{N} \longrightarrow \mathbb{N}$ given by g(x, y) = xy.

Solution. (a) We have $f\left(\frac{x-3}{x-1}\right) = \frac{\frac{x-3}{x-1}-3}{\frac{x-3}{x-1}-1} = x$, i.e. $f \circ f = \operatorname{id}_{\mathbb{R}-\{1\}}$, the identity map on $\mathbb{R} - \{1\}$. This shows that f is its own inverse and so f is bijective.

This shows that f is its own inverse and so f is bijective.

(We can also prove that f is a bijection by showing that it is injective and surjective.)

(b) (i) f is not one-to-one: f(1,1) = f(2,2) but $(1,1) \neq (2,2)$.

f is not onto: There are no positive integers x, y such that f(x, y) = 0.

(ii) g is not one-to-one: g(1,2) = g(2,1) but $(1,2) \neq (2,1)$.

g is onto: For each $n \in \mathbb{N}$ we have g(1, n) = n i.e. n is an image under g.