1. [10pts] Mark each of the following statements as true or false and justify your answer.

(a) $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, m < n$. True: for each m in \mathbb{N} , take n = m + 1.

(b) $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, m < n$. False: if m = 1, then n = 1 does not satisfy m < n.

(c) $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, m | n$. True: if m = 1, then 1 | n for each n in \mathbb{N} .

(d) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy > x + 1$. False: if x = 0, then there is no y in \mathbb{R} such that xy > x + 1.

2. [10pts] Let $A = \{1, \{1\}\}$ and $B = \mathcal{P}(A)$. (a) Verify that $A \cap B \in B$.

Solution. We have $B = \{\emptyset, \{1\}, \{\{1\}\}, A\}$. Hence $A \cap B = \{\{1\}\}$, which is an element of B.

(b) Find $|\mathcal{P}(A \times B)|$.

Solution. $|A \times B| = |A| \times |B| = 2 \times 4 = 8$. Hence $|\mathcal{P}(A \times B)| = 2^8$.

3. [10pts] (a) Let $A = \{1, 2, 3\}$. Give an example of a subset B of A such that

 $(A \times A) - (B \times B) \neq (A - B) \times (A - B).$

Solution. Let $B = \{1\}$ and let a = (1, 2). Then $a \in A \times A$ but $a \notin B \times B$ ($\because 2 \notin B$), so $a \in (A \times A) - (B \times B)$. However, $1 \notin A - B$, so $a \notin (A - B) \times (A - B)$. This shows that $(A \times A) - (B \times B) \neq (A - B) \times (A - B)$.

(b) Prove that if C, D are sets, then $(C \times D) \cap (D \times C) = (C \cap D) \times (C \cap D)$.

Proof. Let $(x, y) \in (C \times D) \cap (D \times C)$. Then $(x, y) \in C \times D$ and $(x, y) \in D \times C$, so $x \in C \cap D$ and $y \in C \cap D$, i.e. $(x, y) \in (C \cap D) \times (C \cap D)$. This proves $(C \times D) \cap (D \times C) \subseteq (C \cap D) \times (C \cap D)$. For the reverse inclusion, let $(x, y) \in (C \cap D) \times (C \cap D)$. Then $x \in C \cap D$ and $y \in C \cap D$, so that $(x, y) \in C \times D$ and $(x, y) \in (D \times C)$, i.e. $(x, y) \in (C \times D) \cap (D \times C)$. This proves $(C \cap D) \times (C \cap D) \times (C \cap D) \subseteq (C \times D) \cap (D \times C)$ and the proof is complete.

4. [10pts] Let $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Prove the following statements.

(a) If $|1 + n| + |1 - n| \le 1$, then $|n^4 - 1| < 16$.

Proof. Since $n \ge 1$, $|1+n| \ge 2$, hence $|1+n| + |1-n| \ge 2$. This means that the statement " $|1+n| + |1-n| \le 1$ " is false and so the implication to prove is vacuously true.

(b) If $x^2 > 4$, then $|1 + x| + |1 - x| \ge 2$.

Proof. By the triangle inequality, $|1 + x| + |1 - x| \ge |(1 + x) + (1 - x)| = 2$. Hence the statement $||1 + x| + |1 - x| \ge 2|$ is true and so the implication to prove is trivially true.

5. [10pts] Let x, y be integers. Prove the following statements.

(a) If x and y are odd, then $4|((x+y)^2 + (x-y)^2)$.

Proof. Let x = 2h + 1, y = 2k + 1 $(h, k \in \mathbb{Z})$. Then $(x + y)^2 + (x - y)^2 = 2(x^2 + y^2) = 2(4h^2 + 4h + 1 + 4k^2 + 4k + 1) = 4(2h^2 + 2h + 2k^2 + 2k + 1)$. Since $2h^2 + 2h + 2k^2 + 2k + 1 \in \mathbb{Z}$, it follows that $4|((x + y)^2 + (x - y)^2)$.

(b) If $4|(x^2+2y^2)$, then x and y are both odd or both even.

Proof.

• We can use a direct proof:

Suppose $4|(x^2 + 2y^2)$, then $x^2 + 2y^2 = 4k$ for some integer k. Hence $x^2 = 2(2k - y^2)$, which is even. Therefore x must be even, say x = 2h for some integer h. We then get $4h^2 + 2y^2 = 4k$, i.e. $y^2 = 2(k - 2h^2)$, which is even. Hence y^2 is even and so y is even as well. This means x and y are both even and so they have the same parity.

• We can also use the contrapositive:

Suppose x and y have opposite parity. We have two cases:

(i) Case x is even and y is odd: In this case x = 2h, y = 2k+1 for some integers h, k. Hence $x^2+2y^2 = 4h^2+2(4k^2+4k+1) = 2(2h^2+4k^2+4k+1)$, and since $2h^2+4k^2+4k+1 = 2(h^2+2k^2+2k)+1$ is odd (as $h^2+2k^2+2k \in \mathbb{Z}$), we deduce that x^2+2y^2 is not divisible by 4 (but it is even). (ii) Case x is odd and y is even: In this case x = 2h + 1, y = 2k for some integers h, k. Hence $x^2+2y^2 = 4(h^2+h+k^2)+1$, which clearly is odd (as $h^2+h+k^2 \in \mathbb{Z}$) so that $4 \not| (x^2+2y^2)$.

6. [10pts] Let $a, b \in \mathbb{Z}$. Prove the following statements.

(a) If $a \equiv 1 \pmod{2}$ and $b \equiv 2 \pmod{3}$, then $3a - 2b \equiv 5 \pmod{6}$

Proof. $3a \equiv 3 \pmod{6}$ and $2b \equiv 4 \pmod{6}$, so $3a - 2b \equiv -1 \equiv 5 \pmod{6}$.

(b) If $a \not\equiv 2 \pmod{4}$, then $a^3 \equiv a \pmod{4}$.

Proof. We have 3 cases. Case $a \equiv 0 \pmod{4}$: then $a^3 \equiv 0 \equiv a \pmod{4}$. Case $a \equiv 1 \pmod{4}$: then $a^3 \equiv 1 \equiv a \pmod{4}$. Case $a \equiv 3 \pmod{4}$: then $a \equiv -1 \pmod{4}$, so $a^3 \equiv -1 \equiv a \pmod{4}$.