\mathbf{c}	117	NO	. 6

Q1 Find solutions of the IVP for he system
$$\frac{dX}{dt} = \begin{pmatrix} -2 & 1 \\ -1 & -4 \end{pmatrix} X$$
 when $X_o = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Q2. The three Eigenvectors of a 3x3 matrix
$$A$$
 are given by $V_1 = \begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}$, $V_2 = \begin{pmatrix} 2 \\ -5 \\ 1 \end{pmatrix}$ and $V_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

- (a): Construct a Q matrix with these three Eigen-Vectors.
- (b): Use the Q matrix to find a diagonal matrix.
- (c): From the diagonal matrix find the Eigen-Value of the 3x3 matrix A.

Q3. A matrix has a defective Eigen-Value of multiplicity 5. Assume that the defect is 2 such that you get three usual eigenvectors $V_1; V_2; V_3$ and two generalized eigenvectors $V_{1g};$ and V_{2g} . Assume that you construct the Q matrix as $Q = \begin{pmatrix} V_1 & \vdots & V_2 & \vdots & V_3 & \vdots & V_{2g} \end{pmatrix}$. Without calculations, write the J matrix.