Math 201	Section#:	Serial #:	Quiz 4(a) (Term 181)
Name :		ID #	/6
1. The integral solid. Descri	$\int \int_{R} \sqrt{9 - y^2} dA,$ be that solid in work	where $R = [0, 4] \times [0, 2]$ ds.	represents the volume of ϵ

2. Use Lagrange multipliers method to find maximum and minimum values of $f(x,y)=x^2-y^2$ subject to the constraint $x^2+y^2=25$.

Math 201 Section#: Serial #: Quiz 4(d) (Term 181)

Name : ID #...... Marks/6

1. Find local minimum value of $f(x,y) = x^3 + y^3 - 6xy$.

2. Write only an expression for Lagrange multiplier method to find extrema of $f(x, y, z) = z - x^2 - y^2$ subject to the constraints x + y + z = 1 and $x^2 + y^2 = 4$.

3. Evaluate $\int_{-3}^{3} \int_{0}^{\pi/2} (y + y^2 \cos x) dx dy$.

Math 201	Section#:	Serial #:	Quiz 4(c) (Term 181)
Name :		ID #	/6
1. Use a Rien	nann sum with $m = 3$	n = 2 to estimate	$\int_{R} \int_{R} (xy) dA \text{ where}$ be upper right corners
$\kappa = 0,0 $	× 10,41 and consider th	ne sample points to t	oe upper right corners

of the subrectangles.

2. Use Lagrange multipliers method to find maximum and minimum values of f(x,y) = x - 3y - 1 subject to the constraint $x^2 + 3y^2 = 16$.

Math 20	01 Section#:	Serial #:	••••	Quiz 4(b) (Ter	m 181,
Name:		ID #		Marks	/6
1. Use a	Riemann sum with $m = [0, 1] \times [0, 1]$ and consider	= n = 2 to estimate	ate $\int \int_R ($	(x+2y) dA where	9
R = [$[0,1] \times [0,1]$ and consider	the sample point	nts to be l	lower left corners	

2. Find absolute maximum and minimum values of $f(x,y) = xy - x^3y^2$ over $R = \{(x,y) : 0 \le x \le 1, 0 \le y \le 1\}$.

of the subrectangles.