Math 201	Section#:	Serial #:	Quiz I(a) (Term 181)
Name :		ID #	
1. For the pa	rametric curve $x = t^3$	$-12t, y = t^2 - 7, f$	and $\frac{d^2y}{dx^2}$. For what values of t ,

the curve is concave upward?

2. Test the function $\gamma = 5 \cos 3\theta$ for symmetry and draw its graph by selecting a suitable scale.

Math 201	Section#:	Serial #:	Quiz I(d) (Term 18	31)
Name :		. ID #	Marks	/6

1. Find area of the surface obtained by rotating the parametric curve

$$C: x = 3 \cos t, \ y = 3 \sin t, \ 0 \le t \le \frac{\pi}{3}$$

about the x-axis.

2. Sketch the polar curve: $r^2 = 4 \cos \theta$.

Math 201	Section#:	Serial #:	Quiz I(c) (Term 181)			
Name :		ID #				
1. Find length of the parametric curve C : $x = \cos t + t \sin t, \ y = \sin t - t \cos t, \ \frac{-\pi}{2} \le t \le \frac{\pi}{2}.$						

2. Find slope of the tangent line to the cardiod $r = 1 + \sin \theta$ at $\theta = \frac{\pi}{3}$.

Math 201	Section#:	Serial #:	Quiz I(b) (Term 181)
Name :		ID #	$\dots Marks \dots M6$

1. For the parametric curve $x = t^2$, $y = t^3 - 3t$, show that there are two tangents at the point (3,0) and find their equations.

2. Identify the curve $(x^2 + y^2)^3 = 4x^2y^2$ by finding its polar equation. Make a rough sketch of this curve (**Do not include details**).