King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 201 FINAL EXAM 181

Sunday 16/12/2018

Net Time Allowed: 180 minutes

MASTER VERSION

- 1. The slope of the tangent line to the polar curve $r = 1 + \sin \theta$ at $\theta = \pi$ is
 - (a) -1
 - (b) $\frac{1}{2}$
 - (c) $\frac{\sqrt{2}}{2}$
 - $(d) -\frac{\sqrt{2}}{2}$
 - (e) 1

- 2. The area of the region enclosed by one loop of the curve $r = \sin 3\theta$ is
 - (a) $\frac{\pi}{12}$
 - (b) $\frac{\pi}{4}$
 - (c) $\frac{\pi}{10}$
 - (d) $\frac{\pi}{3}$
 - (e) $\frac{\pi}{6}$

- 3. Which vector is always orthogonal to $\mathbf{b} \operatorname{proj}_{\mathbf{a}} \mathbf{b}$?
 - (a) **a**
 - (b) **b**
 - (c) $\mathbf{a} \mathbf{b}$
 - (d) $\mathbf{b} \operatorname{proj}_{\mathbf{b}} \mathbf{a}$
 - (e) $\operatorname{proj}_{\mathbf{b}}\mathbf{a}$

4. The equation of the plane which contains the line

$$L_1: x = t - 1, \quad y = -2t + 1, \quad z = 2t,$$

and is parallel to the line

$$L_2: \frac{x}{2} = \frac{y-2}{-3} = z-2$$

is

(a)
$$4x + 3y + z + 1 = 0$$

(b)
$$4x - 3y + z + 1 = 0$$

(c)
$$4x - 3y - z - 1 = 0$$

(d)
$$4x + 3y - z + 1 = 0$$

(e)
$$4x + 3y + z - 1 = 0$$

5. The distance between the intersection point of the lines

$$L_1: x+1=4t, \quad y-3=t, \quad z-1=0$$

$$L_2: x + 13 = 12s, \quad y - 1 = 6s, \quad z - 2 = 3s$$

and the yz-plane is

- (a) 17
- (b) 7
- (c) 1
- (d) 16
- (e) 4

- 6. Suppose (a, b) is an extremal point of $f(x, y) = x^3y$ under the constraint condition $x^2 + 2xy = 3$. Then $\frac{a}{b} =$
 - (a) 2
 - (b) -2
 - (c) 1
 - (d) 0
 - (e) -1

- 7. Let E be the region in \mathbb{R}^3 enclosed by the cone $z = \sqrt{x^2 + y^2}$ and the paraboloid $z = x^2 + y^2$. Then $\iiint_E z^2 dV$ is
 - (a) $\frac{\pi}{20}$
 - (b) $\frac{\pi}{10}$
 - (c) $\frac{\pi}{30}$
 - (d) $\frac{\pi}{40}$
 - (e) $\frac{\pi}{50}$

8. An integral that represents the volume enclosed by the semi-sphere $z = \sqrt{4 - x^2 - y^2}$ and the paraboloid $z = x^2 + y^2 - 4$ is

(a)
$$2\pi \int_0^2 (r\sqrt{4-r^2}+4r-r^3) dr$$

(b)
$$2\pi \int_{0}^{2} (r^3 - 4r + r\sqrt{4 - r^2}) dr$$

(c)
$$2\pi \int_0^2 (r^3 - 4r - r\sqrt{4 - r^2}) dr$$

(d)
$$2\pi \int_0^2 (4 - r^2 + \sqrt{4 - r^2}) dr$$

(e)
$$\pi \int_0^2 (r^3 - 4r - r\sqrt{4 - r^2}) dr$$

9. The volume of the solid that lies above the cone

$$\sqrt{3}\,z = \sqrt{x^2 + y^2}$$

and below the sphere

$$x^2 + y^2 + z^2 - 4z = 0$$

is equal to

- (a) 10π
- (b) π
- (c) $\frac{2\pi}{3}$
- (d) 5π
- (e) 4π

- 10. The length, width and the height of a rectangular box are measured as 15 cm, 10 cm and 5 cm, respectively, with an error in measurement of at most 0.1 cm in each. Using differentials, the maximum error in the calculated volume of the box is estimated to be
 - (a) $27.5 cm^3$
 - (b) $20 cm^3$
 - (c) $25.5 cm^3$
 - (d) $17.5 \ cm^3$
 - (e) $37.5 \ cm^3$

11. If $P = \sqrt{u^2 + v^2 + w^2}$, $u = xe^y$, $v = ye^x$, $w = e^{xy}$, what is $\frac{\partial P}{\partial x}$ at x = 0 and y = 2?

- (a) $\frac{6}{\sqrt{5}}$
- (b) $\frac{2}{\sqrt{5}}$
- (c) $\frac{3}{\sqrt{5}}$
- (d) $\frac{1}{\sqrt{5}}$
- (e) $\frac{4}{\sqrt{5}}$

12. By reversing the order of integration, the integral

$$\int_0^1 \int_{\arcsin y}^{\frac{\pi}{2}} f(x, y) \, dx dy$$

can be written as

(a)
$$\int_0^{\frac{\pi}{2}} \int_0^{\sin x} f(x, y) \, dy dx$$

(b)
$$\int_0^{\frac{\pi}{2}} \int_{\arcsin x}^1 f(x,y) \, dy dx$$

(c)
$$\int_0^{\frac{\pi}{2}} \int_{\sin x}^1 f(x, y) \, dy dx$$

(d)
$$\int_{\arcsin y}^{\frac{\pi}{2}} \int_0^1 f(x,y) \, dy dx$$

(e)
$$\int_0^1 \int_{\cos x}^1 f(x,y) \, dy dx$$

13. The volume of the solid bounded by the paraboloids

$$z = 5x^2 + 5y^2$$
 and $z = 6 - x^2 - y^2$

is

- (a) 3π
- (b) 4π
- (c) 7π
- (d) 6π
- (e) π

- 14. Let E be the solid bounded by the cylinder $y^2 + z^2 = 1$ and the planes x = 0, y = x and z = 0 in the first octant. The value of $\iiint_E z \, dV$ is
 - (a) $\frac{1}{8}$
 - (b) 0
 - (c) $\frac{1}{4}$
 - (d) 2
 - (e) $\frac{1}{16}$

- 15. If D is the region in the xy-plane bounded by y=x, y=-x and $y=\sqrt{4-x^2}$, then $\iint_D y\,dA$ is equal to
 - (a) $\frac{8\sqrt{2}}{3}$
 - (b) $8\sqrt{2}$
 - (c) $\sqrt{2}$
 - (d) $\frac{4\sqrt{2}}{3}$
 - (e) $\frac{\sqrt{2}}{3}$

- 16. The directional derivative of the function $f(x, y, z) = x^2y^2z^6$ at the point (1, 1, 1) in the direction of the vector $\langle 2, 1, -2 \rangle$ is
 - (a) -2
 - $(b) \quad 0$
 - (c) 2
 - (d) -6
 - (e) 4

17. Using spherical coordinates, the integral

$$\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{x^2+y^2}} y \, dz \, dy \, dx$$
can be rewritten as

(a)
$$\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^{3 \csc \varphi} \rho^3 \sin^2 \varphi \sin \theta \ d\rho \, d\varphi \, d\theta$$

(b)
$$\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^{3 \sec \varphi} \rho^3 \sin^2 \varphi \sin \theta \ d\rho \, d\varphi \, d\theta$$

(c)
$$\int_0^{\pi/2} \int_{\pi/4}^{\pi/2} \int_0^3 \rho^2 \sin^3 \varphi \sin \theta \ d\rho \, d\varphi \, d\theta$$

(d)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_0^3 \rho^2 \sin^2 \varphi \sin \theta \ d\rho \, d\varphi \, d\theta$$

(e)
$$\int_0^{2\pi} \int_0^{\pi} \int_0^3 \rho^3 \sin^2 \varphi \sin \theta \ d\rho \, d\varphi \, d\theta$$

- 18. The function $f(x, y) = 3x + 12y x^3 y^3$ has
 - (a) two saddle points
 - (b) exactly one saddle point
 - (c) two local minima
 - (d) two local maxima
 - (e) one local maximum, one local minimum, and no saddle points

19. The double integral

$$\int_0^4 \int_{1-y/4}^1 \cos(x^2) \, dx \, dy =$$

- (a) $2\sin(1)$
- (b) π
- (c) $\sin(2)$
- (d) $3\cos(1)$
- (e) $2 \sin(1)$

- 20. The sum of the maximum and the minimum values of the function $f(x,y)=x^2-2x+2y^2$ inside the region $x^2+y^2\leqslant 4$ is
 - (a) 8
 - (b) 0
 - (c) 7
 - (d) 12
 - (e) -1

21. Which of the following limits exist?

- (1) $\lim_{(x,y)\to(0,0)} \frac{x^4 + y^4}{x^2 + y^2}$
- (2) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$
- (3) $\lim_{(x,y)\to(0,0)} \frac{x+y}{\sqrt{x^2+y^2}}$
- (a) (1) only
- (b) (1) and (2) only
- (c) (2) only
- (d) (3) only
- (e) (1) and (3) only

22. Which of the following lines is contained in the domain of $f(x,y) = \arcsin(y-x-2)$?

- (a) y = x + 2
- (b) y = x 4
- (c) y = x + 4
- (d) y = x
- (e) y = -x 2

- 23. If D is the region bounded by $y=x,\,y=x^3,\,x\geqslant 0$, then $\iint_D (x^2+2y)\,dA$ is equal to
 - (a) $\frac{23}{84}$
 - (b) $\frac{33}{68}$
 - (c) $\frac{11}{84}$
 - (d) $\frac{3}{28}$
 - (e) $\frac{1}{4}$

- 24. Given that f is a differentiable function with f(2,5) = 2, $f_x(2,5) = 3$, and $f_y(2,5) = -2$, use a linear approximation to estimate f(2.2,4.9)
 - (a) 2.8
 - (b) 2.5
 - (c) 2.6
 - (d) 2.7
 - (e) 2.9

- 25. If f(x,y) is differentiable whose gradient at the point P=(5,1) is $\nabla f(5,1)=\langle 1,-2\rangle$, then $\frac{d}{dt}|_{t=0}f(5+\frac{3}{5}t,1+\frac{4}{5}t)$ is equal to
 - (a) -1
 - (b) $-\frac{3}{5}$
 - (c) $\frac{7}{10}$
 - (d) $-\frac{4}{5}$
 - (e) $\frac{11}{10}$

26. The double integral

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} x^2 (x^2 + y^2)^2 \, dy \, dx$$
 is equal to

- (a) $\frac{\pi}{16}$
- (b) $\frac{\pi}{2}$
- (c) $\frac{\pi}{6}$
- (d) $\frac{3\pi}{8}$
- (e) $\frac{\pi}{4}$

27. An equation of the tangent plane to the surface $\sin(xz) - 4\cos(yz) = 4$ at the point $(\pi, \pi, 1)$ is

(a)
$$x + \pi z = 2\pi$$

(b)
$$2x - \pi z = \pi$$

$$(c) \quad x + 4y + \pi z = 6\pi$$

(d)
$$x - \pi z = 0$$

(e)
$$x + 4y - \pi z = 4\pi$$

28. If $xy = ze^{xz}$, then $\frac{\partial z}{\partial y}(1, e, 1) - \frac{\partial z}{\partial x}(1, e, 1)$ is equal to

(a)
$$\frac{1}{2e}$$

(b)
$$\frac{2+e}{e}$$

(c)
$$\frac{e-1}{2e}$$

(d)
$$\frac{e+3}{2e}$$

(e)
$$\frac{2-e}{2e}$$