King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

Math 201 Exam II 181

Wednesday 14/11/2018
Net Time Allowed: 120 minutes

MASTER VERSION

1. At which point does the line with parametric equations

$$x = -1 + 3t$$
 $y = 2 - 2t$ $z = 3 + t$

intersect the plane 3x + y - 4z = -4?

- (a) (8, -4, 6)
- (b) (0,0,1)
- (c) (1,1,2)
- (d) $\left(2, 4, \frac{7}{2}\right)$
- (e) they do not intersect

2. Symmetric equations for the line through the point (1, -2, -4) that is orthogonal to the plane 2x - y + 3z = 5 are given by

(a)
$$\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$$

(b)
$$\frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-4}{3}$$

(c)
$$\frac{x-1}{2} = \frac{-y-2}{-1} = \frac{z+4}{3}$$

(d)
$$\frac{x-1}{\sqrt{14}} = \frac{y+2}{\sqrt{14}} = \frac{z+4}{\sqrt{14}}$$

(e)
$$\frac{x+1}{\sqrt{14}} = \frac{y-2}{\sqrt{14}} = \frac{z-4}{\sqrt{14}}$$

- 3. Which of the following functions has level curves drawn below?
 - (a) $f(x,y) = x^2 y^2$
 - (b) $f(x,y) = x^2 + y^2$
 - (c) $f(x,y) = x^2 y$
 - (d) $f(x,y) = x + y^2$
 - (e) f(x,y) = x y

4. The distance between the planes

$$2x - 3y + z = 4$$
, $4x - 6y + 2z = 3$

- (a) $\frac{5}{2\sqrt{14}}$
- (b) $\frac{1}{\sqrt{14}}$
- (c) $2\sqrt{14}$
- (d) 1
- (e) 14

- 5. A point on the surface $z=x^2-y^2$ where the tangent plane is parallel to the plane x+3y+z=2018 is
 - (a) $\left(-\frac{1}{2}, \frac{3}{2}, -2\right)$
 - (b) (0,0,0)
 - (c) (-1,1,0)
 - (d) $\left(\frac{1}{2}, -\frac{3}{2}, -2\right)$
 - (e) $\left(-\frac{1}{2}, -\frac{3}{2}, -2\right)$

- 6. The directional derivative of $f(x,y) = xe^{2y}$ at the point (1,0) in the direction of <-1,2> is
 - (a) $\frac{3}{\sqrt{5}}$
 - (b) 3
 - (c) $\frac{1}{\sqrt{5}}$
 - (d) 1
 - (e) $\sqrt{5}$

- 7. An equation of the tangent plane to the surface $xz + \ln(2x + y) = 5$ at the point (-1, 3, -5) is
 - (a) -3x + y z = 11
 - (b) 3x + y + z = -5
 - (c) 3x + y z = 5
 - (d) -x + 3y 5z = 35
 - (e) $z = \ln(2x + y) 5$

- 8. If $x^2 + y^2 + z^2 = 3xyz$, then $\frac{\partial z}{\partial x}(1, 1, 1) + \frac{\partial z}{\partial y}(1, 1, 1) =$
 - (a) -2
 - (b) 0
 - (c) 2
 - (d) -1
 - (e) 1

- 9. Which of the following vectors is parallel to the plane 3x 5y + 7z = 10?
 - (a) $\langle 1, 2, 1 \rangle$
 - (b) (1, -2, 1)
 - (c) $\langle 1, 3, 1 \rangle$
 - (d) $\langle 1, 0, 1 \rangle$
 - (e) $\langle 3, -5, 7 \rangle$

10. Find the limit

$$\lim_{(x,y)\to(0.0)} \frac{2x^4y^2}{x^4+3y^4}$$

- (a) 0
- (b) 2
- (c) 2/3
- (d) 1/2
- (e) does not exist

11. If

$$f(x,y) = e^{\sin x} + x^5 y + \ln(1+y^2),$$
 then
$$\frac{\partial^2 f}{\partial x \, \partial y}$$

- (a) $5x^4$
- $(b) \quad \frac{2y}{1+y^2}$
- (c) $20x^3y$
- (d) $e^{\sin x} \cos x$
- (e) $e^{\sin x} \cos x + x^5 + \frac{2y}{1+y^2}$

12. What is the direction in which the function

$$f(x,y) = yx^2 - \frac{x}{y^2}$$

increases most rapidly at the point (-2,1)?

- (a) $\langle -1, 0 \rangle$
- (b) $\left\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$
- (c) $\langle 0, 1 \rangle$
- (d) $\langle -2, 2 \rangle$
- (e) $\langle 2, -2 \rangle$

13. Consider the surface

$$x^2 - 3y^2 - 9z^2 = 0.$$

Which of the following is/are correct?

- (A) The traces in the plane parallel to the yz-plane are ellipses.
- (B) The vertical trace in the xz-plane is the lines x = 3z and x = -3z.
- (C) The surface is a hyperboloid of two sheets.
- (a) (A) and (B) only
- (b) (A) only
- (c) (B) and (C) only
- (d) (B) only
- (e) (C) only

14. Find the limit

$$\lim_{(x,y)\to(0,0)}\frac{4x^2y^2-x^2-y^2}{x^2+y^2}$$

- (a) -1
- (b) 1
- (c) 0
- (d) 3
- (e) does not exist

- 15. The x-coordinate of the point of intersection of the plane x + 2y + z = 6 and the line through the points (1,0,1) and (2,-1,1) is
 - (a) -3
 - (b) -2
 - (c) -1
 - (d) 0
 - (e) 1

16. Describe the level surfaces of the function

$$f(x,y,z) = x^2 + y^2 + z^2 - 2x - 4y + 8z - 201$$

- (a) spheres with center (1, 2, -4)
- (b) spheres with center (-2, 4, 8)
- (c) spheres with center (0,0,0)
- (d) planes with normal $\langle -2, -4, 8 \rangle$
- (e) planes with normal $\langle 1, 1, 1 \rangle$

17. Match the function expressions

A.
$$f(x,y) = \arcsin(y-x^2)$$

A.
$$f(x, y) = \arcsin(y - x^2)$$

B. $f(x, y) = \sqrt{1 - x^2} - \sqrt{1 - y^2}$

C.
$$f(x,y) = \sqrt{y-x} \ln(y+x)$$

with their domains among the sketched regions.

- (a) $A \to c, B \to a, C \to d$
- (b) $A \to c, B \to a, C \to b$
- (c) $A \to c, B \to b, C \to d$
- (d) $A \to e, B \to c, C \to a$
- (e) $A \rightarrow e, B \rightarrow d, C \rightarrow c$

- Using the method of linear approximation to the function $f(x,y) = \frac{x}{x+2y}$ 18. at (1,2), the approximate value of f(1.5,2.5) is
 - (a)
 - (b)
 - (c)
 - (d)
 - (e)

- 19. If $z=x^2+xy^3,\,x=uv^2+w^2,\,$ and $y=u+ve^w,\,$ what is $\frac{\partial z}{\partial u}$ when $u=2,\,v=1$ and w=0?
 - (a) 85
 - (b) 93
 - (c) 42
 - (d) 66
 - (e) 99

20. At what point is the tangent plane to the graph of the function

$$f(x,y) = x^2 + y^2 + xy - x + 4y$$

horizontal

- (a) (2, -3, f(2, -3))
- (b) (2,3,f(2,3))
- (c) (1,5,f(1,5))
- (d) (-1, 5, f(-1, 5))
- (e) (-1, -4, f(-1, -4))

Q	MM	V1	V2	V3	V4
1	a	a	e	d	c
2	a	е	b	d	b
3	a	е	d	d	b
4	a	d	d	b	d
5	a	e	b	d	d
6	a	c	e	С	c
7	a	e	d	b	a
8	a	b	b	c	b
9	a	d	c	c	a
10	a	e	e	a	e
11	a	b	c	a	b
12	a	a	e	a	d
13	a	a	d	a	a
14	a	a	e	a	e
15	a	b	c	d	b
16	a	С	e	е	a
17	a	С	С	a	d
18	a	e	c	d	С
19	a	a	d	d	c
20	a	b	d	b	d