KFUPM Mathematics & Stat	Term 181 stics MATH 102	Date: 11/12/2018 Duration: 40 minutes		
Name:	Class Test 3 ID #:	Section:	4	Serial #:
1. $a_n = \left\{\frac{n}{n-m}\right\}^{\frac{n}{k}}$ is (divergent / convrgent to)				

2. $\sum_{0}^{\infty} 2^{2n+1} \cos\left(\frac{2n+1}{2}\pi\right) 3^{-n}$ is (abs. conv. / cond. conv. / div.) using _____ test.

3.
$$b_k = (-1)^k (1 - \frac{1}{k})$$
 is (divergent / convrgent to _____)

4. $\sum \ln\left(\frac{1}{n}\right)$ is (abs. conv. / cond. conv. / div.) using ______ test.

5.
$$\sum_{0}^{\infty} \frac{4^k k! k!}{(2k)!}$$
 is (abs. conv. / cond. conv. / div.) using _____ test.

6.
$$\sum \frac{(-1)^{n+1}(x+2)^n}{n2^n}$$
 has a center = _____, conv. Interval = _____, and R = _____, and R = _____.

7. Show that
$$\sum_{0}^{\infty} \frac{(-1)^k \pi^{2k-1}}{2^{2k+1}(2k)!} = 0.$$

With My Best Wishes