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1. If [[x]] represents the largest integer that is less than or equal to x, then
lim
x→2

([[x]] + [[2− x]]) =

1(a)

2(b)

0(c)

−1(d)

does not exist(e)

2. If f(x) = esin
2(π x), then f ′(x) =

π esin
2 (π x) sin(2 π x)(a)

π esin
2 (π x) cos(2 π x)(b)

esin
2 (π x) cos2(π x)(c)

π esin
2 (π x)(d)

esin
2 (π x) sin(π x)(e)
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3. If y = x cosh (x2), then y′(1) =

3e

2
− 1

2e
(a)

e

2
− 3

2e
(b)

3e

2
+

1

2e
(c)

e

2
+

3

2e
(d)

3e

2
+

3

2e
(e)

4. The sum of the absolute maximum and the absolute minimum values of
the function f(x) = x4 − 2x2 + 2 in the interval [−1, 2] is

11(a)

13(b)

15(c)

9(d)

7(e)
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5. Consider the function f(x) = x + ex. The value of c that satisfies the
conclusion of the Mean Value Theorem on the interval [0, 1] is

ln (e− 1)(a)

ln (1− e)(b)

1− e(c)

e− 1(d)

0(e)

6. If f(x) = ln(4− x2), then the graph of f is increasing on

(−2, 0)(a)

(−∞,−2)(b)

(−2, 2)(c)

(−∞, 0](d)

[0, 2)(e)
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7. By using the linear approximation of f(x) =
√
100 + x at a = 0,

√
100.5

is approximately equal to

401

40
(a)

3

20
(b)

77

40
(c)

71

20
(d)

399

40
(e)

8. The sum of all critical numbers of the function f(x) =
x2 + 14√
4x+ 1

is

2(a)

−7

3
(b)

2

3
(c)

−1

12
(d)

−2

3
(e)
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9. lim
x→∞

(
x+ 2

x− 1

)x
=

e3(a)

e2(b)

e(c)

e−2(d)

e−4(e)

10. If 1200 cm2 of material is available to make a box with a square base and
an open top, then the largest possible volume of the box is

4000 cm3(a)

2000 cm3(b)

1000 cm3(c)

500 cm3(d)

200 cm3(e)
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11. The slope of the line tangent to the curve 2x + tan−1 (xy) = x2 y3 + 2 at
the point (1, 0) is

−2(a)

2(b)

1(c)

−1(d)

0(e)

12. If f ′(x) =
3x3 −

√
x+ 1

x
and f(1) = 0, then f(3) =

28− 2
√
3 + ln 3(a)

26− 2
√
3 + ln 3(b)

9− 2
√
3(c)

10− 2
√
3− 1

9
(d)

8− 2
√
3− 1

9
(e)
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13. lim
x→0

cos(2x)− 1

x10
=

−∞(a)

−210

10!
(b)

210

10
(c)

∞(d)

0(e)

14. Let f(x) = ex g(x), with g(1) = 1, g′(1) = 2, and g′′(1) = 3. Then f ′′(1) =

8 e(a)

e(b)

3 e(c)

e+ 1(d)

e+ 3(e)
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15. The equation of the horizontal asymptote of the graph of
f(x) = ln (1 + x2)− ln (1 + 2x2) is

y = − ln 2(a)

y = 0(b)

y = 2(c)

y = 1(d)

y = 2 ln 2(e)

16. If f(x) = ln

 1 + x

1 +
√
x

 , then f ′(1) =

1

4
(a)

1

2
(b)

1

3
(c)

1(d)

0(e)
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17. The graph of f(x) = sin x+ cos x, 0 ≤ x ≤ 2 π is concave up on

(
3π

4
,
7π

4

)
(a)

(
0,

3π

4

)
(b)

(
7π

4
, 2π

)
(c)

(
0,

π

4

)
(d)

(
5π

4
, 2π

)
(e)

18. If a and b are the values that make f(x) =

 ax3 x ≤ 2
x2 + b x > 2

differentiable, then a+ b =

−1(a)

1(b)

5

3
(c)

1

3
(d)

0(e)
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19. If f ′(x) = e(x−4)3 (x2 + x+ 2)3(x− 2)3(x− 1), then f is decreasing on

(1, 2)(a)

(1, 4)(b)

(2, 4)(c)

(4,∞)(d)

(−∞, 2)(e)

20. The number of vertical asymptotes of the function y =
x2 − 4

(x2 + 2x− 8)(x2 + x+ 1)
is

1(a)

2(b)

3(c)

4(d)

0(e)
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21. If f(x) =
(x+ 1)3(x− 2) cos x

3x(2x+ 1)
, then f ′(0) =

−1 + 2 ln 3(a)

0(b)

1 + 3 ln 3(c)

1− 3 ln 3(d)

−2(e)

22. Two cars leave an intersection. One car travels north at 30 km/h and
the other travels east at 40 km/h. How fast is the distance between them
increasing at the end of 30mins?

50 km/h(a)

100 km/h(b)

60 km/h(c)

25 km/h(d)

40 km/h(e)
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23. The number of inflection points of f(x) = x
√
6− x is

0(a)

1(b)

2(c)

3(d)

4(e)

24. Newton’s Method is used to estimate the critical number of the function
g(x) = x6 + 15x2 + 30x+ 90. If we start with x1 = 0, then x3 =

−0.9(a)

−0.7(b)

−0.5(c)

−1.1(d)

−1.3(e)
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25. If sinh(x f(x)) + sinh (x) =
3

4
and f(ln (2)) = 0 then (ln 2) f ′(ln 2) =

−5

4
(a)

−3

4
(b)

−1

4
(c)

−7

4
(d)

−9

4
(e)

26. Which one of the following statements is TRUE?

If f ′ exists and is non-zero for all x, then f(1) ̸= f(0).(a)

lim
x→0

x

ex
= 1(b)

If f and g are increasing on an interval I, then f−g is increasing on I.(c)

If f ′(x) = g′(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.(d)

If f has an absolute minimum at c, then f ′(c) = 0(e)
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27. Let a > 0 and let f(x) = x2+
x

a
, a ≤ x ≤ 2a. The value of a, that makes

the average rate of change of the function f on [a, 2a] the smallest possible,
is

1√
3

(a)

1(b)

2(c)

√
2(d)

1√
5

(e)

28. If the volume of an expanding cube is increasing at the rate of 4m3/min,

how fast is its surface area increasing when the surface area is 24m2?

8m2/min(a)

4m2/min(b)

3m2/min(c)

2m2/min(d)

5m2/min(e)
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1. The sum of the absolute maximum and the absolute minimum values of
the function f(x) = x4 − 2x2 + 2 in the interval [−1, 2] is

7(a)

15(b)

9(c)

13(d)

11(e)

2. If f(x) = esin
2(π x), then f ′(x) =

esin
2 (π x) sin(π x)(a)

esin
2 (π x) cos2(π x)(b)

π esin
2 (π x) cos(2 π x)(c)

π esin
2 (π x) sin(2 π x)(d)

π esin
2 (π x)(e)
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3. If f(x) = ln(4− x2), then the graph of f is increasing on

(−2, 2)(a)

(−2, 0)(b)

[0, 2)(c)

(−∞, 0](d)

(−∞,−2)(e)

4. Consider the function f(x) = x + ex. The value of c that satisfies the
conclusion of the Mean Value Theorem on the interval [0, 1] is

ln (e− 1)(a)

e− 1(b)

ln (1− e)(c)

0(d)

1− e(e)
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5. By using the linear approximation of f(x) =
√
100 + x at a = 0,

√
100.5

is approximately equal to

71

20
(a)

77

40
(b)

3

20
(c)

401

40
(d)

399

40
(e)

6. If y = x cosh (x2), then y′(1) =

e

2
− 3

2e
(a)

3e

2
+

1

2e
(b)

e

2
+

3

2e
(c)

3e

2
+

3

2e
(d)

3e

2
− 1

2e
(e)
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7. If [[x]] represents the largest integer that is less than or equal to x, then
lim
x→2

([[x]] + [[2− x]]) =

1(a)

2(b)

−1(c)

0(d)

does not exist(e)

8. If f ′(x) =
3x3 −

√
x+ 1

x
and f(1) = 0, then f(3) =

28− 2
√
3 + ln 3(a)

10− 2
√
3− 1

9
(b)

26− 2
√
3 + ln 3(c)

8− 2
√
3− 1

9
(d)

9− 2
√
3(e)
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9. The slope of the line tangent to the curve 2x + tan−1 (xy) = x2 y3 + 2 at
the point (1, 0) is

2(a)

−2(b)

0(c)

1(d)

−1(e)

10. If 1200 cm2 of material is available to make a box with a square base and
an open top, then the largest possible volume of the box is

4000 cm3(a)

2000 cm3(b)

1000 cm3(c)

500 cm3(d)

200 cm3(e)
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11. Let f(x) = ex g(x), with g(1) = 1, g′(1) = 2, and g′′(1) = 3. Then f ′′(1) =

e+ 3(a)

8 e(b)

e+ 1(c)

3 e(d)

e(e)

12. lim
x→∞

(
x+ 2

x− 1

)x
=

e−2(a)

e−4(b)

e(c)

e2(d)

e3(e)
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13. lim
x→0

cos(2x)− 1

x10
=

210

10
(a)

−210

10!
(b)

∞(c)

−∞(d)

0(e)

14. The sum of all critical numbers of the function f(x) =
x2 + 14√
4x+ 1

is

2(a)

−2

3
(b)

−7

3
(c)

2

3
(d)

−1

12
(e)
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15. The equation of the horizontal asymptote of the graph of
f(x) = ln (1 + x2)− ln (1 + 2x2) is

y = − ln 2(a)

y = 2 ln 2(b)

y = 2(c)

y = 1(d)

y = 0(e)

16. The graph of f(x) = sin x+ cos x, 0 ≤ x ≤ 2 π is concave up on

(
0,

3π

4

)
(a)

(
3π

4
,
7π

4

)
(b)

(
7π

4
, 2π

)
(c)

(
0,

π

4

)
(d)

(
5π

4
, 2π

)
(e)
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17. If a and b are the values that make f(x) =

 ax3 x ≤ 2
x2 + b x > 2

differentiable, then a+ b =

1(a)

1

3
(b)

−1(c)

5

3
(d)

0(e)

18. If f(x) = ln

 1 + x

1 +
√
x

 , then f ′(1) =

1

3
(a)

0(b)

1

2
(c)

1

4
(d)

1(e)
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19. If f ′(x) = e(x−4)3 (x2 + x+ 2)3(x− 2)3(x− 1), then f is decreasing on

(1, 4)(a)

(4,∞)(b)

(1, 2)(c)

(2, 4)(d)

(−∞, 2)(e)

20. If f(x) =
(x+ 1)3(x− 2) cos x

3x(2x+ 1)
, then f ′(0) =

−1 + 2 ln 3(a)

1 + 3 ln 3(b)

1− 3 ln 3(c)

−2(d)

0(e)
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21. The number of vertical asymptotes of the function y =
x2 − 4

(x2 + 2x− 8)(x2 + x+ 1)
is

4(a)

0(b)

3(c)

1(d)

2(e)

22. Two cars leave an intersection. One car travels north at 30 km/h and
the other travels east at 40 km/h. How fast is the distance between them
increasing at the end of 30mins?

50 km/h(a)

40 km/h(b)

60 km/h(c)

25 km/h(d)

100 km/h(e)
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23. The number of inflection points of f(x) = x
√
6− x is

2(a)

0(b)

4(c)

3(d)

1(e)

24. If the volume of an expanding cube is increasing at the rate of 4m3/min,
how fast is its surface area increasing when the surface area is 24m2?

8m2/min(a)

4m2/min(b)

5m2/min(c)

3m2/min(d)

2m2/min(e)
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25. If sinh(x f(x)) + sinh (x) =
3

4
and f(ln (2)) = 0 then (ln 2) f ′(ln 2) =

−3

4
(a)

−5

4
(b)

−7

4
(c)

−1

4
(d)

−9

4
(e)

26. Newton’s Method is used to estimate the critical number of the function
g(x) = x6 + 15x2 + 30x+ 90. If we start with x1 = 0, then x3 =

−0.9(a)

−1.1(b)

−1.3(c)

−0.7(d)

−0.5(e)
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27. Which one of the following statements is TRUE?

If f has an absolute minimum at c, then f ′(c) = 0(a)

If f and g are increasing on an interval I, then f−g is increasing on I.(b)

If f ′(x) = g′(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.(c)

If f ′ exists and is non-zero for all x, then f(1) ̸= f(0).(d)

lim
x→0

x

ex
= 1(e)

28. Let a > 0 and let f(x) = x2+
x

a
, a ≤ x ≤ 2a. The value of a, that makes

the average rate of change of the function f on [a, 2a] the smallest possible,
is

1√
5

(a)

1(b)

√
2(c)

1√
3

(d)

2(e)
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1. If y = x cosh (x2), then y′(1) =

3e

2
+

1

2e
(a)

e

2
− 3

2e
(b)

3e

2
− 1

2e
(c)

3e

2
+

3

2e
(d)

e

2
+

3

2e
(e)

2. If f(x) = ln(4− x2), then the graph of f is increasing on

(−2, 2)(a)

(−2, 0)(b)

(−∞, 0](c)

[0, 2)(d)

(−∞,−2)(e)
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3. By using the linear approximation of f(x) =
√
100 + x at a = 0,

√
100.5

is approximately equal to

77

40
(a)

399

40
(b)

3

20
(c)

71

20
(d)

401

40
(e)

4. If f(x) = esin
2(π x), then f ′(x) =

π esin
2 (π x) cos(2 π x)(a)

esin
2 (π x) sin(π x)(b)

π esin
2 (π x) sin(2 π x)(c)

esin
2 (π x) cos2(π x)(d)

π esin
2 (π x)(e)
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5. The sum of the absolute maximum and the absolute minimum values of
the function f(x) = x4 − 2x2 + 2 in the interval [−1, 2] is

7(a)

15(b)

13(c)

9(d)

11(e)

6. If [[x]] represents the largest integer that is less than or equal to x, then
lim
x→2

([[x]] + [[2− x]]) =

2(a)

1(b)

−1(c)

0(d)

does not exist(e)
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7. Consider the function f(x) = x + ex. The value of c that satisfies the
conclusion of the Mean Value Theorem on the interval [0, 1] is

1− e(a)

ln (e− 1)(b)

0(c)

ln (1− e)(d)

e− 1(e)

8. lim
x→∞

(
x+ 2

x− 1

)x
=

e(a)

e2(b)

e−4(c)

e3(d)

e−2(e)
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9. The slope of the line tangent to the curve 2x + tan−1 (xy) = x2 y3 + 2 at
the point (1, 0) is

2(a)

−1(b)

−2(c)

0(d)

1(e)

10. If f ′(x) =
3x3 −

√
x+ 1

x
and f(1) = 0, then f(3) =

10− 2
√
3− 1

9
(a)

26− 2
√
3 + ln 3(b)

8− 2
√
3− 1

9
(c)

9− 2
√
3(d)

28− 2
√
3 + ln 3(e)
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11. The sum of all critical numbers of the function f(x) =
x2 + 14√
4x+ 1

is

2(a)

−1

12
(b)

−7

3
(c)

−2

3
(d)

2

3
(e)

12. lim
x→0

cos(2x)− 1

x10
=

−∞(a)

∞(b)

0(c)

210

10
(d)

−210

10!
(e)
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13. If 1200 cm2 of material is available to make a box with a square base and
an open top, then the largest possible volume of the box is

2000 cm3(a)

500 cm3(b)

200 cm3(c)

1000 cm3(d)

4000 cm3(e)

14. Let f(x) = ex g(x), with g(1) = 1, g′(1) = 2, and g′′(1) = 3. Then f ′′(1) =

e(a)

8 e(b)

3 e(c)

e+ 1(d)

e+ 3(e)
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15. If f(x) =
(x+ 1)3(x− 2) cos x

3x(2x+ 1)
, then f ′(0) =

1− 3 ln 3(a)

1 + 3 ln 3(b)

−1 + 2 ln 3(c)

0(d)

−2(e)

16. If a and b are the values that make f(x) =

 ax3 x ≤ 2
x2 + b x > 2

differentiable, then a+ b =

0(a)

−1(b)

1(c)

5

3
(d)

1

3
(e)
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17. The equation of the horizontal asymptote of the graph of
f(x) = ln (1 + x2)− ln (1 + 2x2) is

y = 1(a)

y = 2 ln 2(b)

y = − ln 2(c)

y = 2(d)

y = 0(e)

18. If f ′(x) = e(x−4)3 (x2 + x+ 2)3(x− 2)3(x− 1), then f is decreasing on

(−∞, 2)(a)

(4,∞)(b)

(2, 4)(c)

(1, 4)(d)

(1, 2)(e)
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19. The graph of f(x) = sin x+ cos x, 0 ≤ x ≤ 2 π is concave up on

(
0,

π

4

)
(a)

(
5π

4
, 2π

)
(b)

(
0,

3π

4

)
(c)

(
3π

4
,
7π

4

)
(d)

(
7π

4
, 2π

)
(e)

20. The number of vertical asymptotes of the function y =
x2 − 4

(x2 + 2x− 8)(x2 + x+ 1)
is

2(a)

0(b)

4(c)

1(d)

3(e)
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21. If f(x) = ln

 1 + x

1 +
√
x

 , then f ′(1) =

1(a)

0(b)

1

4
(c)

1

3
(d)

1

2
(e)

22. Which one of the following statements is TRUE?

If f has an absolute minimum at c, then f ′(c) = 0(a)

If f ′ exists and is non-zero for all x, then f(1) ̸= f(0).(b)

lim
x→0

x

ex
= 1(c)

If f ′(x) = g′(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.(d)

If f and g are increasing on an interval I, then f−g is increasing on I.(e)
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23. If the volume of an expanding cube is increasing at the rate of 4m3/min,
how fast is its surface area increasing when the surface area is 24m2?

2m2/min(a)

5m2/min(b)

8m2/min(c)

3m2/min(d)

4m2/min(e)

24. If sinh(x f(x)) + sinh (x) =
3

4
and f(ln (2)) = 0 then (ln 2) f ′(ln 2) =

−7

4
(a)

−3

4
(b)

−9

4
(c)

−5

4
(d)

−1

4
(e)
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25. Newton’s Method is used to estimate the critical number of the function
g(x) = x6 + 15x2 + 30x+ 90. If we start with x1 = 0, then x3 =

−1.1(a)

−1.3(b)

−0.5(c)

−0.9(d)

−0.7(e)

26. Let a > 0 and let f(x) = x2+
x

a
, a ≤ x ≤ 2a. The value of a, that makes

the average rate of change of the function f on [a, 2a] the smallest possible,
is

√
2(a)

1(b)

2(c)

1√
5

(d)

1√
3

(e)
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27. Two cars leave an intersection. One car travels north at 30 km/h and
the other travels east at 40 km/h. How fast is the distance between them
increasing at the end of 30mins?

40 km/h(a)

100 km/h(b)

50 km/h(c)

25 km/h(d)

60 km/h(e)

28. The number of inflection points of f(x) = x
√
6− x is

0(a)

2(b)

3(c)

1(d)

4(e)
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1. Consider the function f(x) = x + ex. The value of c that satisfies the
conclusion of the Mean Value Theorem on the interval [0, 1] is

1− e(a)

e− 1(b)

ln (1− e)(c)

0(d)

ln (e− 1)(e)

2. If [[x]] represents the largest integer that is less than or equal to x, then
lim
x→2

([[x]] + [[2− x]]) =

0(a)

1(b)

2(c)

does not exist(d)

−1(e)
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3. If y = x cosh (x2), then y′(1) =

3e

2
− 1

2e
(a)

e

2
+

3

2e
(b)

3e

2
+

1

2e
(c)

e

2
− 3

2e
(d)

3e

2
+

3

2e
(e)

4. By using the linear approximation of f(x) =
√
100 + x at a = 0,

√
100.5

is approximately equal to

399

40
(a)

77

40
(b)

401

40
(c)

71

20
(d)

3

20
(e)
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5. If f(x) = ln(4− x2), then the graph of f is increasing on

[0, 2)(a)

(−∞,−2)(b)

(−2, 2)(c)

(−∞, 0](d)

(−2, 0)(e)

6. The sum of the absolute maximum and the absolute minimum values of
the function f(x) = x4 − 2x2 + 2 in the interval [−1, 2] is

15(a)

7(b)

11(c)

13(d)

9(e)
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7. If f(x) = esin
2(π x), then f ′(x) =

esin
2 (π x) cos2(π x)(a)

π esin
2 (π x) sin(2 π x)(b)

π esin
2 (π x) cos(2 π x)(c)

π esin
2 (π x)(d)

esin
2 (π x) sin(π x)(e)

8. The sum of all critical numbers of the function f(x) =
x2 + 14√
4x+ 1

is

−1

12
(a)

2

3
(b)

−2

3
(c)

2(d)

−7

3
(e)
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9. Let f(x) = ex g(x), with g(1) = 1, g′(1) = 2, and g′′(1) = 3. Then f ′′(1) =

e(a)

3 e(b)

e+ 1(c)

e+ 3(d)

8 e(e)

10. If f ′(x) =
3x3 −

√
x+ 1

x
and f(1) = 0, then f(3) =

8− 2
√
3− 1

9
(a)

9− 2
√
3(b)

26− 2
√
3 + ln 3(c)

28− 2
√
3 + ln 3(d)

10− 2
√
3− 1

9
(e)
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11. If 1200 cm2 of material is available to make a box with a square base and
an open top, then the largest possible volume of the box is

4000 cm3(a)

500 cm3(b)

200 cm3(c)

2000 cm3(d)

1000 cm3(e)

12. The slope of the line tangent to the curve 2x + tan−1 (xy) = x2 y3 + 2 at
the point (1, 0) is

2(a)

−2(b)

1(c)

−1(d)

0(e)



Term 181, Math 101, Final Exam Page 7 of 14 CODE 003

13. lim
x→0

cos(2x)− 1

x10
=

0(a)

210

10
(b)

∞(c)

−210

10!
(d)

−∞(e)

14. lim
x→∞

(
x+ 2

x− 1

)x
=

e2(a)

e3(b)

e−4(c)

e(d)

e−2(e)
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15. The equation of the horizontal asymptote of the graph of
f(x) = ln (1 + x2)− ln (1 + 2x2) is

y = − ln 2(a)

y = 2(b)

y = 1(c)

y = 2 ln 2(d)

y = 0(e)

16. If a and b are the values that make f(x) =

 ax3 x ≤ 2
x2 + b x > 2

differentiable, then a+ b =

−1(a)

1(b)

5

3
(c)

0(d)

1

3
(e)
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17. If f(x) =
(x+ 1)3(x− 2) cos x

3x(2x+ 1)
, then f ′(0) =

0(a)

−1 + 2 ln 3(b)

−2(c)

1− 3 ln 3(d)

1 + 3 ln 3(e)

18. The number of vertical asymptotes of the function y =
x2 − 4

(x2 + 2x− 8)(x2 + x+ 1)
is

3(a)

1(b)

4(c)

2(d)

0(e)
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19. If f ′(x) = e(x−4)3 (x2 + x+ 2)3(x− 2)3(x− 1), then f is decreasing on

(1, 4)(a)

(4,∞)(b)

(2, 4)(c)

(−∞, 2)(d)

(1, 2)(e)

20. If f(x) = ln

 1 + x

1 +
√
x

 , then f ′(1) =

1(a)

0(b)

1

4
(c)

1

2
(d)

1

3
(e)
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21. The graph of f(x) = sin x+ cos x, 0 ≤ x ≤ 2 π is concave up on

(
5π

4
, 2π

)
(a)

(
0,

3π

4

)
(b)

(
3π

4
,
7π

4

)
(c)

(
0,

π

4

)
(d)

(
7π

4
, 2π

)
(e)

22. Let a > 0 and let f(x) = x2+
x

a
, a ≤ x ≤ 2a. The value of a, that makes

the average rate of change of the function f on [a, 2a] the smallest possible,
is

1√
5

(a)

1√
3

(b)

√
2(c)

1(d)

2(e)
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23. Newton’s Method is used to estimate the critical number of the function
g(x) = x6 + 15x2 + 30x+ 90. If we start with x1 = 0, then x3 =

−0.7(a)

−1.3(b)

−0.9(c)

−0.5(d)

−1.1(e)

24. The number of inflection points of f(x) = x
√
6− x is

0(a)

2(b)

3(c)

4(d)

1(e)
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25. Which one of the following statements is TRUE?

If f has an absolute minimum at c, then f ′(c) = 0(a)

If f ′ exists and is non-zero for all x, then f(1) ̸= f(0).(b)

If f ′(x) = g′(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.(c)

lim
x→0

x

ex
= 1(d)

If f and g are increasing on an interval I, then f−g is increasing on I.(e)

26. Two cars leave an intersection. One car travels north at 30 km/h and
the other travels east at 40 km/h. How fast is the distance between them
increasing at the end of 30mins?

100 km/h(a)

50 km/h(b)

60 km/h(c)

25 km/h(d)

40 km/h(e)
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27. If the volume of an expanding cube is increasing at the rate of 4m3/min,
how fast is its surface area increasing when the surface area is 24m2?

3m2/min(a)

4m2/min(b)

2m2/min(c)

8m2/min(d)

5m2/min(e)

28. If sinh(x f(x)) + sinh (x) =
3

4
and f(ln (2)) = 0 then (ln 2) f ′(ln 2) =

−7

4
(a)

−1

4
(b)

−5

4
(c)

−9

4
(d)

−3

4
(e)
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1. If f(x) = esin
2(π x), then f ′(x) =

π esin
2 (π x) cos(2 π x)(a)

esin
2 (π x) sin(π x)(b)

esin
2 (π x) cos2(π x)(c)

π esin
2 (π x)(d)

π esin
2 (π x) sin(2 π x)(e)

2. If [[x]] represents the largest integer that is less than or equal to x, then
lim
x→2

([[x]] + [[2− x]]) =

1(a)

0(b)

2(c)

does not exist(d)

−1(e)
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3. If y = x cosh (x2), then y′(1) =

3e

2
+

1

2e
(a)

3e

2
+

3

2e
(b)

3e

2
− 1

2e
(c)

e

2
+

3

2e
(d)

e

2
− 3

2e
(e)

4. Consider the function f(x) = x + ex. The value of c that satisfies the
conclusion of the Mean Value Theorem on the interval [0, 1] is

1− e(a)

0(b)

ln (e− 1)(c)

ln (1− e)(d)

e− 1(e)
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5. By using the linear approximation of f(x) =
√
100 + x at a = 0,

√
100.5

is approximately equal to

77

40
(a)

399

40
(b)

3

20
(c)

71

20
(d)

401

40
(e)

6. The sum of the absolute maximum and the absolute minimum values of
the function f(x) = x4 − 2x2 + 2 in the interval [−1, 2] is

9(a)

11(b)

13(c)

7(d)

15(e)
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7. If f(x) = ln(4− x2), then the graph of f is increasing on

(−2, 0)(a)

(−2, 2)(b)

(−∞, 0](c)

[0, 2)(d)

(−∞,−2)(e)

8. lim
x→∞

(
x+ 2

x− 1

)x
=

e−2(a)

e2(b)

e−4(c)

e(d)

e3(e)
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9. The sum of all critical numbers of the function f(x) =
x2 + 14√
4x+ 1

is

−7

3
(a)

2

3
(b)

−1

12
(c)

2(d)

−2

3
(e)

10. If 1200 cm2 of material is available to make a box with a square base and
an open top, then the largest possible volume of the box is

500 cm3(a)

1000 cm3(b)

200 cm3(c)

2000 cm3(d)

4000 cm3(e)
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11. If f ′(x) =
3x3 −

√
x+ 1

x
and f(1) = 0, then f(3) =

28− 2
√
3 + ln 3(a)

10− 2
√
3− 1

9
(b)

9− 2
√
3(c)

8− 2
√
3− 1

9
(d)

26− 2
√
3 + ln 3(e)

12. The slope of the line tangent to the curve 2x + tan−1 (xy) = x2 y3 + 2 at
the point (1, 0) is

1(a)

0(b)

−1(c)

2(d)

−2(e)
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13. Let f(x) = ex g(x), with g(1) = 1, g′(1) = 2, and g′′(1) = 3. Then f ′′(1) =

e+ 3(a)

e(b)

e+ 1(c)

8 e(d)

3 e(e)

14. lim
x→0

cos(2x)− 1

x10
=

−∞(a)

0(b)

210

10
(c)

∞(d)

−210

10!
(e)
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15. If f(x) = ln

 1 + x

1 +
√
x

 , then f ′(1) =

0(a)

1

4
(b)

1

2
(c)

1

3
(d)

1(e)

16. The number of vertical asymptotes of the function y =
x2 − 4

(x2 + 2x− 8)(x2 + x+ 1)
is

0(a)

3(b)

2(c)

1(d)

4(e)
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17. If a and b are the values that make f(x) =

 ax3 x ≤ 2
x2 + b x > 2

differentiable, then a+ b =

1(a)

5

3
(b)

0(c)

−1(d)

1

3
(e)

18. If f(x) =
(x+ 1)3(x− 2) cos x

3x(2x+ 1)
, then f ′(0) =

1 + 3 ln 3(a)

1− 3 ln 3(b)

−1 + 2 ln 3(c)

−2(d)

0(e)
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19. The equation of the horizontal asymptote of the graph of
f(x) = ln (1 + x2)− ln (1 + 2x2) is

y = − ln 2(a)

y = 2(b)

y = 2 ln 2(c)

y = 0(d)

y = 1(e)

20. If f ′(x) = e(x−4)3 (x2 + x+ 2)3(x− 2)3(x− 1), then f is decreasing on

(2, 4)(a)

(1, 4)(b)

(−∞, 2)(c)

(1, 2)(d)

(4,∞)(e)
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21. The graph of f(x) = sin x+ cos x, 0 ≤ x ≤ 2 π is concave up on

(
5π

4
, 2π

)
(a)

(
7π

4
, 2π

)
(b)

(
0,

3π

4

)
(c)

(
0,

π

4

)
(d)

(
3π

4
,
7π

4

)
(e)

22. If the volume of an expanding cube is increasing at the rate of 4m3/min,
how fast is its surface area increasing when the surface area is 24m2?

3m2/min(a)

2m2/min(b)

4m2/min(c)

8m2/min(d)

5m2/min(e)
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23. If sinh(x f(x)) + sinh (x) =
3

4
and f(ln (2)) = 0 then (ln 2) f ′(ln 2) =

−9

4
(a)

−1

4
(b)

−5

4
(c)

−3

4
(d)

−7

4
(e)

24. Two cars leave an intersection. One car travels north at 30 km/h and
the other travels east at 40 km/h. How fast is the distance between them
increasing at the end of 30mins?

40 km/h(a)

50 km/h(b)

25 km/h(c)

60 km/h(d)

100 km/h(e)
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25. The number of inflection points of f(x) = x
√
6− x is

2(a)

1(b)

3(c)

4(d)

0(e)

26. Newton’s Method is used to estimate the critical number of the function
g(x) = x6 + 15x2 + 30x+ 90. If we start with x1 = 0, then x3 =

−1.3(a)

−0.9(b)

−0.7(c)

−1.1(d)

−0.5(e)
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27. Let a > 0 and let f(x) = x2+
x

a
, a ≤ x ≤ 2a. The value of a, that makes

the average rate of change of the function f on [a, 2a] the smallest possible,
is

1√
3

(a)

1(b)

√
2(c)

2(d)

1√
5

(e)

28. Which one of the following statements is TRUE?

If f ′ exists and is non-zero for all x, then f(1) ̸= f(0).(a)

If f ′(x) = g′(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.(b)

lim
x→0

x

ex
= 1(c)

If f has an absolute minimum at c, then f ′(c) = 0(d)

If f and g are increasing on an interval I, then f−g is increasing on I.(e)
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Q MM V1 V2 V3 V4

1 a e c e e
2 a d b b a
3 a b e a c
4 a a c c c
5 a d e e e
6 a e b c b
7 a a b b a
8 a a d d e
9 a b c e d
10 a a e d e
11 a b a a a
12 a e a b e
13 a d e e d
14 a a b b a
15 a a c a b
16 a b b a d
17 a c c b d
18 a d e b c
19 a c d e a
20 a a d c d
21 a d c c e
22 a a b b d
23 a b c c c
24 a a d a b
25 a b d b e
26 a a e b b
27 a d c d a
28 a d a c a


