King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

> Math 101 Final Exam 181 Saturday 22/12/2018

EXAM COVER

Number of versions: 4 Number of questions: 28 Number of Answers: 5 King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics Math 101 Final Exam 181 Saturday 22/12/2018 Net Time Allowed: 180 minutes

MASTER VERSION

- MASTER
- 1. If $\llbracket x \rrbracket$ represents the largest integer that is less than or equal to x, then $\lim_{x \to 2} (\llbracket x \rrbracket + \llbracket 2 x \rrbracket) =$
 - (a) 1
 - (b) 2
 - (c) 0
 - (d) -1
 - (e) does not exist

2. If
$$f(x) = e^{\sin^2(\pi x)}$$
, then $f'(x) =$

- (a) $\pi e^{\sin^2(\pi x)} \sin(2\pi x)$
- (b) $\pi e^{\sin^2(\pi x)} \cos(2\pi x)$
- (c) $e^{\sin^2(\pi x)} \cos^2(\pi x)$
- (d) $\pi e^{\sin^2(\pi x)}$
- (e) $e^{\sin^2(\pi x)} \sin(\pi x)$

3. If
$$y = x \cosh(x^2)$$
, then $y'(1) =$

(a) $\frac{3e}{2} - \frac{1}{2e}$ (b) $\frac{e}{2} - \frac{3}{2e}$ (c) $\frac{3e}{2} + \frac{1}{2e}$ (d) $\frac{e}{2} + \frac{3}{2e}$ (e) $\frac{3e}{2} + \frac{3}{2e}$

- 4. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = x^4 2x^2 + 2$ in the interval [-1, 2] is
 - (a) 11
 - (b) 13
 - (c) 15
 - (d) 9
 - (e) 7

- 5. Consider the function $f(x) = x + e^x$. The value of c that satisfies the conclusion of the Mean Value Theorem on the interval [0, 1] is
 - (a) $\ln(e-1)$
 - (b) $\ln(1-e)$
 - (c) 1 e
 - (d) e 1
 - (e) 0

6. If $f(x) = \ln(4 - x^2)$, then the graph of f is increasing on

- (a) (-2,0)
- (b) $(-\infty, -2)$
- (c) (-2,2)
- (d) $(-\infty, 0]$
- (e) [0,2)

- 7. By using the linear approximation of $f(x) = \sqrt{100 + x}$ at a = 0, $\sqrt{100.5}$ is approximately equal to
 - (a) $\frac{401}{40}$ (b) $\frac{3}{20}$ (c) $\frac{77}{40}$ (d) $\frac{71}{20}$ (e) $\frac{399}{40}$

8. The sum of all critical numbers of the function $f(x) = \frac{x^2 + 14}{\sqrt{4x + 1}}$ is

(a) 2 (b) $\frac{-7}{3}$ (c) $\frac{2}{3}$ (d) $\frac{-1}{12}$ (e) $\frac{-2}{3}$

MASTER

- 9. $\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x =$
 - (a) e^3
 - (b) e^2
 - (c) e
 - (d) e^{-2}
 - (e) e^{-4}

- 10. If $1200 \, cm^2$ of material is available to make a box with a square base and an open top, then the largest possible volume of the box is
 - (a) $4000 \, cm^3$
 - (b) $2000 \, cm^3$
 - (c) $1000 \, cm^3$
 - (d) $500 \, cm^3$
 - (e) $200 \, cm^3$

- 11. The slope of the line tangent to the curve $2x + \tan^{-1}(xy) = x^2y^3 + 2$ at the point (1,0) is
 - (a) -2
 - (b) 2
 - (c) 1
 - (d) -1
 - (e) 0

12. If
$$f'(x) = \frac{3x^3 - \sqrt{x} + 1}{x}$$
 and $f(1) = 0$, then $f(3) =$

- (a) $28 2\sqrt{3} + \ln 3$
- (b) $26 2\sqrt{3} + \ln 3$
- (c) $9 2\sqrt{3}$
- (d) $10 2\sqrt{3} \frac{1}{9}$
- (e) $8 2\sqrt{3} \frac{1}{9}$

13.
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{x^{10}} =$$

(a) $-\infty$ (b) $\frac{-2^{10}}{10!}$ (c) $\frac{2^{10}}{10}$ (d) ∞ (e) 0

14. Let $f(x) = e^x g(x)$, with g(1) = 1, g'(1) = 2, and g''(1) = 3. Then f''(1) =

- (a) 8e
- (b) *e*
- (c) 3e
- (d) e + 1
- (e) e+3

- 15. The equation of the horizontal asymptote of the graph of $f(x) = \ln(1 + x^2) \ln(1 + 2x^2)$ is
 - (a) $y = -\ln 2$
 - (b) y = 0
 - (c) y = 2
 - (d) y = 1

(e)
$$y = 2 \ln 2$$

16. If
$$f(x) = \ln\left(\frac{1+x}{1+\sqrt{x}}\right)$$
, then $f'(1) =$

(a) $\frac{1}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) 1 (e) 0 17. The graph of $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is concave up on

(a)
$$\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$$

(b) $\left(0, \frac{3\pi}{4}\right)$
(c) $\left(\frac{7\pi}{4}, 2\pi\right)$
(d) $\left(0, \frac{\pi}{4}\right)$
(e) $\left(\frac{5\pi}{4}, 2\pi\right)$

18. If a and b are the values that make $f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$ differentiable, then a + b =

- (a) −1
- (b) 1
- (c) $\frac{5}{3}$
- (d) $\frac{1}{3}$
- (e) 0

19. If $f'(x) = e^{(x-4)^3} (x^2 + x + 2)^3 (x-2)^3 (x-1)$, then f is decreasing on

- (a) (1, 2)
- (b) (1,4)
- (c) (2,4)
- (d) $(4,\infty)$
- (e) $(-\infty, 2)$

20. The number of vertical asymptotes of the function $y = \frac{x^2 - 4}{(x^2 + 2x - 8)(x^2 + x + 1)}$ is

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 0

Term 181, Math 101, Final Exam

MASTER

21. If
$$f(x) = \frac{(x+1)^3(x-2)\cos x}{3^x(2x+1)}$$
, then $f'(0) =$

- (a) $-1+2 \ln 3$
- (b) 0
- (c) $1+3 \ln 3$
- (d) $1 3 \ln 3$

(e)
$$-2$$

- 22. Two cars leave an intersection. One car travels north at $30 \, km/h$ and the other travels east at $40 \, km/h$. How fast is the distance between them increasing at the end of $30 \, mins$?
 - (a) $50 \, km/h$
 - (b) $100 \, km/h$
 - (c) $60 \, km/h$
 - (d) $25 \, km/h$
 - (e) $40 \, km/h$

- 23. The number of inflection points of $f(x) = x\sqrt{6-x}$ is
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3
 - (e) 4

24. Newton's Method is used to estimate the critical number of the function $g(x) = x^6 + 15x^2 + 30x + 90$. If we start with $x_1 = 0$, then $x_3 =$

- (a) -0.9
- (b) -0.7
- (c) -0.5
- (d) -1.1
- (e) -1.3

Term 181, Math 101, Final Exam

MASTER

25. If
$$\sinh(x f(x)) + \sinh(x) = \frac{3}{4}$$
 and $f(\ln(2)) = 0$ then $(\ln 2) f'(\ln 2) = 0$

(a)
$$-\frac{5}{4}$$

(b) $-\frac{3}{4}$
(c) $-\frac{1}{4}$
(d) $-\frac{7}{4}$
(e) $-\frac{9}{4}$

4

Which one of the following statements is **TRUE**? 26.

(a) If f' exists and is non-zero for all x, then $f(1) \neq f(0)$.

(b)
$$\lim_{x \to 0} \frac{x}{e^x} = 1$$

(c) If f and g are increasing on an interval I, then f - g is increasing on I.

(d) If
$$f'(x) = g'(x)$$
 for $0 < x < 1$, then $f(x) = g(x)$ for $0 < x < 1$.

(e) If f has an absolute minimum at c, then f'(c) = 0

27. Let a > 0 and let $f(x) = x^2 + \frac{x}{a}$, $a \le x \le 2a$. The value of a, that makes the average rate of change of the function f on [a, 2a] the smallest possible, is

(a)
$$\frac{1}{\sqrt{3}}$$

- (b) 1
- (c) 2
- (d) $\sqrt{2}$

(e)
$$\frac{1}{\sqrt{5}}$$

- 28. If the volume of an expanding cube is increasing at the rate of $4 m^3/min$, how fast is its surface area increasing when the surface area is $24 m^2$?
 - (a) $8 m^2 / min$
 - (b) $4 m^2 / min$
 - (c) $3m^2/min$
 - (d) $2m^2/min$
 - (e) $5 m^2 / min$

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 001

CODE 001

Math 101 **Final Exam** 181 Saturday 22/12/2018 Net Time Allowed: 180 minutes

Name:

ID: _____ Sec: _____

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2.Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the 4. upper left corner of the answer sheet.
- 5.When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = x^4 2x^2 + 2$ in the interval [-1, 2] is
 - (a) 7
 - (b) 15
 - (c) 9
 - (d) 13
 - (e) 11

2. If
$$f(x) = e^{\sin^2(\pi x)}$$
, then $f'(x) =$

- (a) $e^{\sin^2(\pi x)} \sin(\pi x)$
- (b) $e^{\sin^2(\pi x)} \cos^2(\pi x)$
- (c) $\pi e^{\sin^2(\pi x)} \cos(2\pi x)$
- (d) $\pi e^{\sin^2(\pi x)} \sin(2\pi x)$
- (e) $\pi e^{\sin^2(\pi x)}$

- 3. If $f(x) = \ln(4 x^2)$, then the graph of f is increasing on
 - (a) (-2,2)
 - (b) (-2,0)
 - (c) [0,2)
 - (d) $(-\infty, 0]$
 - (e) $(-\infty, -2)$

- 4. Consider the function $f(x) = x + e^x$. The value of c that satisfies the conclusion of the **Mean Value Theorem** on the interval [0, 1] is
 - (a) $\ln(e-1)$
 - (b) e 1
 - (c) $\ln(1-e)$
 - (d) 0
 - (e) 1 e

- 5. By using the linear approximation of $f(x) = \sqrt{100 + x}$ at a = 0, $\sqrt{100.5}$ is approximately equal to
 - (a) $\frac{71}{20}$ (b) $\frac{77}{40}$ (c) $\frac{3}{20}$ (d) $\frac{401}{40}$ (e) $\frac{399}{40}$

6. If
$$y = x \cosh(x^2)$$
, then $y'(1) =$

(a)
$$\frac{e}{2} - \frac{3}{2e}$$

(b)
$$\frac{3e}{2} + \frac{1}{2e}$$

(c)
$$\frac{e}{2} + \frac{3}{2e}$$

(d)
$$\frac{3e}{2} + \frac{3}{2e}$$

(e)
$$\frac{3e}{2} - \frac{1}{2e}$$

- CODE 001
- 7. If $\llbracket x \rrbracket$ represents the largest integer that is less than or equal to x, then $\lim_{x \to 2} (\llbracket x \rrbracket + \llbracket 2 x \rrbracket) =$
 - (a) 1
 - (b) 2
 - (c) -1
 - (d) 0
 - (e) does not exist

8. If
$$f'(x) = \frac{3x^3 - \sqrt{x} + 1}{x}$$
 and $f(1) = 0$, then $f(3) =$

(a)
$$28 - 2\sqrt{3} + \ln 3$$

(b) $10 - 2\sqrt{3} - \frac{1}{9}$

(c)
$$26 - 2\sqrt{3} + \ln 3$$

(d)
$$8 - 2\sqrt{3} - \frac{1}{9}$$

(e)
$$9 - 2\sqrt{3}$$

- 9. The slope of the line tangent to the curve $2x + \tan^{-1}(xy) = x^2y^3 + 2$ at the point (1,0) is
 - (a) 2
 - (b) -2
 - (c) 0
 - (d) 1
 - (e) −1

- 10. If $1200 \, cm^2$ of material is available to make a box with a square base and an open top, then the largest possible volume of the box is
 - (a) $4000 \, cm^3$
 - (b) $2000 \, cm^3$
 - (c) $1000 \, cm^3$
 - (d) $500 \, cm^3$
 - (e) $200 \, cm^3$

- 11. Let $f(x) = e^x g(x)$, with g(1) = 1, g'(1) = 2, and g''(1) = 3. Then f''(1) =
 - (a) e+3
 - (b) 8*e*
 - (c) e + 1
 - (d) 3e
 - (e) *e*

12.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x =$$

- (a) e^{-2}
- (b) e^{-4}
- (c) e
- (d) e^2
- (e) e^3

13.
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{x^{10}} =$$

(a) $\frac{2^{10}}{10}$ (b) $\frac{-2^{10}}{10!}$ (c) ∞ (d) $-\infty$ (e) 0

14. The sum of all critical numbers of the function $f(x) = \frac{x^2 + 14}{\sqrt{4x + 1}}$ is

(a) 2 (b) $\frac{-2}{3}$ (c) $\frac{-7}{3}$ (d) $\frac{2}{3}$ (e) $\frac{-1}{12}$

- 15. The equation of the horizontal asymptote of the graph of $f(x) = \ln(1 + x^2) \ln(1 + 2x^2)$ is
 - (a) $y = -\ln 2$
 - (b) $y = 2 \ln 2$
 - (c) y = 2
 - (d) y = 1

(e)
$$y = 0$$

16. The graph of $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is concave up on

(a)
$$\left(0, \frac{3\pi}{4}\right)$$

(b) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$
(c) $\left(\frac{7\pi}{4}, 2\pi\right)$
(d) $\left(0, \frac{\pi}{4}\right)$
(e) $\left(\frac{5\pi}{4}, 2\pi\right)$

CODE 001

- 17. If a and b are the values that make $f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$ differentiable, then a + b =
 - (a) 1
 - (b) $\frac{1}{3}$ (c) -1
 - (d) $\frac{5}{3}$
 - (e) 0

18. If
$$f(x) = \ln\left(\frac{1+x}{1+\sqrt{x}}\right)$$
, then $f'(1) =$

(a)
$$\frac{1}{3}$$

(b) 0
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

(e) 1

19. If $f'(x) = e^{(x-4)^3} (x^2 + x + 2)^3 (x-2)^3 (x-1)$, then f is decreasing on

- (a) (1, 4)
- (b) $(4,\infty)$
- (c) (1, 2)
- (d) (2,4)
- (e) $(-\infty, 2)$

20. If
$$f(x) = \frac{(x+1)^3(x-2)\cos x}{3^x(2x+1)}$$
, then $f'(0) =$

- (a) $-1+2 \ln 3$
- (b) $1+3 \ln 3$
- (c) $1 3 \ln 3$
- (d) -2
- (e) 0

- 21. The number of vertical asymptotes of the function $y = \frac{x^2 4}{(x^2 + 2x 8)(x^2 + x + 1)}$ is
 - (a) 4
 - (b) 0
 - (c) 3
 - (d) 1
 - (e) 2

- 22. Two cars leave an intersection. One car travels north at 30 km/h and the other travels east at 40 km/h. How fast is the distance between them increasing at the end of 30 mins?
 - (a) $50 \, km/h$
 - (b) $40 \, km/h$
 - (c) $60 \, km/h$
 - (d) $25 \, km/h$
 - (e) $100 \, km/h$

- 23. The number of inflection points of $f(x) = x\sqrt{6-x}$ is
 - (a) 2
 - (b) 0
 - (c) 4
 - (d) 3
 - (e) 1

- 24. If the volume of an expanding cube is increasing at the rate of $4 m^3/min$, how fast is its surface area increasing when the surface area is $24 m^2$?
 - (a) $8 m^2 / min$
 - (b) $4 m^2 / min$
 - (c) $5 m^2/min$
 - (d) $3m^2/min$
 - (e) $2m^2/min$

Term 181, Math 101, Final Exam

CODE 001

25. If
$$\sinh(x f(x)) + \sinh(x) = \frac{3}{4}$$
 and $f(\ln(2)) = 0$ then $(\ln 2) f'(\ln 2) =$

(a)
$$-\frac{3}{4}$$

(b) $-\frac{5}{4}$
(c) $-\frac{7}{4}$
(d) $-\frac{1}{4}$
(e) $-\frac{9}{4}$

4

Newton's Method is used to estimate the critical number of the function 26. $g(x) = x^{6} + 15x^{2} + 30x + 90$. If we start with $x_{1} = 0$, then $x_{3} =$

- (a) -0.9
- (b) -1.1
- (c) -1.3
- (d) -0.7
- (e) -0.5

27. Which one of the following statements is **TRUE**?

- (a) If f has an absolute minimum at c, then f'(c) = 0
- (b) If f and g are increasing on an interval I, then f g is increasing on I.
- (c) If f'(x) = g'(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.
- (d) If f' exists and is non-zero for all x, then $f(1) \neq f(0)$.
- (e) $\lim_{x \to 0} \frac{x}{e^x} = 1$

- 28. Let a > 0 and let $f(x) = x^2 + \frac{x}{a}$, $a \le x \le 2a$. The value of a, that makes the average rate of change of the function f on [a, 2a] the smallest possible, is
 - (a) $\frac{1}{\sqrt{5}}$
 - (b) 1
 - (c) $\sqrt{2}$
 - (d) $\frac{1}{\sqrt{3}}$
 - (e) 2

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 002

CODE 002

Math 101 **Final Exam** 181 Saturday 22/12/2018 Net Time Allowed: 180 minutes

Name:

ID: _____ Sec: _____

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2.Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the 4. upper left corner of the answer sheet.
- 5.When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$y = x \cosh(x^2)$$
, then $y'(1) =$

(a)
$$\frac{3e}{2} + \frac{1}{2e}$$

(b)
$$\frac{e}{2} - \frac{3}{2e}$$

(c)
$$\frac{3e}{2} - \frac{1}{2e}$$

(d)
$$\frac{3e}{2} + \frac{3}{2e}$$

(e)
$$\frac{e}{2} + \frac{3}{2e}$$

2. If $f(x) = \ln(4 - x^2)$, then the graph of f is increasing on

- (a) (-2,2)
- (b) (-2,0)
- (c) $(-\infty, 0]$
- (d) [0,2)
- (e) $(-\infty, -2)$

- 3. By using the linear approximation of $f(x) = \sqrt{100 + x}$ at a = 0, $\sqrt{100.5}$ is approximately equal to
 - (a) $\frac{77}{40}$ (b) $\frac{399}{40}$ (c) $\frac{3}{20}$ (d) $\frac{71}{20}$ (e) $\frac{401}{40}$

4. If
$$f(x) = e^{\sin^2(\pi x)}$$
, then $f'(x) =$

(a)
$$\pi e^{\sin^2(\pi x)} \cos(2\pi x)$$

(b)
$$e^{\sin^2(\pi x)} \sin(\pi x)$$

(c)
$$\pi e^{\sin^2(\pi x)} \sin(2\pi x)$$

- (d) $e^{\sin^2(\pi x)} \cos^2(\pi x)$
- (e) $\pi e^{\sin^2(\pi x)}$

- 5. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = x^4 2x^2 + 2$ in the interval [-1, 2] is
 - (a) 7
 - (b) 15
 - (c) 13
 - (d) 9
 - (e) 11

- 6. If $[\![x]\!]$ represents the largest integer that is less than or equal to x, then $\lim_{x\to 2}([\![x]\!] + [\![2-x]\!]) =$
 - (a) 2
 - (b) 1
 - (c) -1
 - (d) 0
 - (e) does not exist

- 7. Consider the function $f(x) = x + e^x$. The value of c that satisfies the conclusion of the **Mean Value Theorem** on the interval [0, 1] is
 - (a) 1 e
 - (b) $\ln(e-1)$
 - (c) 0
 - (d) $\ln(1-e)$
 - (e) e 1

8.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x =$$

- (a) *e*
- (b) e^2
- (c) e^{-4}
- (d) e^3
- (e) e^{-2}
- 9. The slope of the line tangent to the curve $2x + \tan^{-1}(xy) = x^2y^3 + 2$ at the point (1,0) is
 - (a) 2
 - (b) -1
 - (c) -2
 - (d) 0
 - (e) 1

10. If
$$f'(x) = \frac{3x^3 - \sqrt{x+1}}{x}$$
 and $f(1) = 0$, then $f(3) =$

(a) $10 - 2\sqrt{3} - \frac{1}{9}$ (b) $26 - 2\sqrt{3} + \ln 3$ (c) $8 - 2\sqrt{3} - \frac{1}{9}$ (d) $9 - 2\sqrt{3}$ (e) $28 - 2\sqrt{3} + \ln 3$

- 11. The sum of all critical numbers of the function $f(x) = \frac{x^2 + 14}{\sqrt{4x + 1}}$ is
 - (a) 2 (b) $\frac{-1}{12}$ (c) $\frac{-7}{3}$ (d) $\frac{-2}{3}$ (e) $\frac{2}{3}$

12.
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{x^{10}} =$$

- (a) $-\infty$
- (b) ∞
- (c) 0
- (d) $\frac{2^{10}}{10}$

(e)
$$\frac{-2^{10}}{10!}$$

- 13. If $1200 \, cm^2$ of material is available to make a box with a square base and an open top, then the largest possible volume of the box is
 - (a) $2000 \, cm^3$
 - (b) $500 \, cm^3$
 - (c) $200 \, cm^3$
 - (d) $1000 \, cm^3$
 - (e) $4000 \, cm^3$

14. Let $f(x) = e^x g(x)$, with g(1) = 1, g'(1) = 2, and g''(1) = 3. Then f''(1) =

- (a) e
- (b) 8e
- (c) 3e
- (d) e+1
- (e) e+3

Term 181, Math 101, Final Exam

15. If
$$f(x) = \frac{(x+1)^3(x-2)\cos x}{3^x(2x+1)}$$
, then $f'(0) =$

- (a) $1 3 \ln 3$
- (b) $1+3 \ln 3$
- (c) $-1+2 \ln 3$
- (d) 0
- (e) -2

16. If a and b are the values that make $f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$ differentiable, then a + b =

- (a) 0
- (b) -1
- (c) 1
- (d) $\frac{5}{3}$
- (e) $\frac{1}{3}$

- 17. The equation of the horizontal asymptote of the graph of $f(x) = \ln(1 + x^2) \ln(1 + 2x^2)$ is
 - (a) y = 1
 - (b) $y = 2 \ln 2$
 - (c) $y = -\ln 2$
 - (d) y = 2

(e)
$$y = 0$$

18. If $f'(x) = e^{(x-4)^3} (x^2 + x + 2)^3 (x-2)^3 (x-1)$, then f is decreasing on

- (a) $(-\infty, 2)$
- (b) $(4,\infty)$
- (c) (2,4)
- (d) (1,4)
- (e) (1,2)

19. The graph of $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is concave up on

(a)
$$\left(0, \frac{\pi}{4}\right)$$

(b) $\left(\frac{5\pi}{4}, 2\pi\right)$
(c) $\left(0, \frac{3\pi}{4}\right)$
(d) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$
(e) $\left(\frac{7\pi}{4}, 2\pi\right)$

20. The number of vertical asymptotes of the function $y = \frac{x^2 - 4}{(x^2 + 2x - 8)(x^2 + x + 1)}$ is

- (a) 2
- (b) 0
- (c) 4
- (d) 1
- (e) 3

Term 181, Math 101, Final Exam

21. If
$$f(x) = \ln\left(\frac{1+x}{1+\sqrt{x}}\right)$$
, then $f'(1) =$

- (a) 1
- (b) 0
- (c) $\frac{1}{4}$
- (d) $\frac{1}{3}$
- (e) $\frac{1}{2}$

22. Which one of the following statements is **TRUE**?

- (a) If f has an absolute minimum at c, then f'(c) = 0
- (b) If f' exists and is non-zero for all x, then $f(1) \neq f(0)$.

(c)
$$\lim_{x \to 0} \frac{x}{e^x} = 1$$

- (d) If f'(x) = g'(x) for 0 < x < 1, then f(x) = g(x) for 0 < x < 1.
- (e) If f and g are increasing on an interval I, then f g is increasing on I.

- 23. If the volume of an expanding cube is increasing at the rate of $4 m^3/min$, how fast is its surface area increasing when the surface area is $24 m^2$?
 - (a) $2 m^2 / min$
 - (b) $5 m^2 / min$
 - (c) $8 m^2/min$
 - (d) $3m^2/min$
 - (e) $4 m^2/min$

24. If $\sinh(x f(x)) + \sinh(x) = \frac{3}{4}$ and $f(\ln(2)) = 0$ then $(\ln 2) f'(\ln 2) =$

(a)
$$-\frac{7}{4}$$

(b) $-\frac{3}{4}$
(c) $-\frac{9}{4}$
(d) $-\frac{5}{4}$
(e) $-\frac{1}{4}$

- 25. Newton's Method is used to estimate the critical number of the function $g(x) = x^6 + 15x^2 + 30x + 90$. If we start with $x_1 = 0$, then $x_3 =$
 - (a) -1.1
 - (b) -1.3
 - (c) -0.5
 - (d) -0.9
 - (e) -0.7

- 26. Let a > 0 and let $f(x) = x^2 + \frac{x}{a}$, $a \le x \le 2a$. The value of a, that makes the average rate of change of the function f on [a, 2a] the smallest possible, is
 - (a) $\sqrt{2}$
 - (b) 1
 - (c) 2
 - (d) $\frac{1}{\sqrt{5}}$
 - (e) $\frac{1}{\sqrt{3}}$

- 27. Two cars leave an intersection. One car travels north at $30 \, km/h$ and the other travels east at $40 \, km/h$. How fast is the distance between them increasing at the end of $30 \, mins$?
 - (a) $40 \, km/h$
 - (b) $100 \, km/h$
 - (c) $50 \, km/h$
 - (d) $25 \, km/h$
 - (e) $60 \, km/h$

28. The number of inflection points of $f(x) = x\sqrt{6-x}$ is

- (a) 0
- (b) 2
- (c) 3
- (d) 1
- (e) 4

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 003

CODE 003

Math 101 **Final Exam** 181 Saturday 22/12/2018 Net Time Allowed: 180 minutes

Name:

ID: _____ Sec: _____

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2.Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the 4. upper left corner of the answer sheet.
- 5.When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

- 1. Consider the function $f(x) = x + e^x$. The value of c that satisfies the conclusion of the **Mean Value Theorem** on the interval [0, 1] is
 - (a) 1 e
 - (b) e 1
 - (c) $\ln(1-e)$
 - (d) 0
 - (e) $\ln(e-1)$

- 2. If $\llbracket x \rrbracket$ represents the largest integer that is less than or equal to x, then $\lim_{x \to 2} (\llbracket x \rrbracket + \llbracket 2 x \rrbracket) =$
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) does not exist
 - (e) -1

3. If
$$y = x \cosh(x^2)$$
, then $y'(1) =$

(a) $\frac{3e}{2} - \frac{1}{2e}$ (b) $\frac{e}{2} + \frac{3}{2e}$ (c) $\frac{3e}{2} + \frac{1}{2e}$ (d) $\frac{e}{2} - \frac{3}{2e}$ (e) $\frac{3e}{2} + \frac{3}{2e}$

4. By using the linear approximation of $f(x) = \sqrt{100 + x}$ at a = 0, $\sqrt{100.5}$ is approximately equal to

(a)
$$\frac{399}{40}$$

(b) $\frac{77}{40}$
(c) $\frac{401}{40}$
(d) $\frac{71}{20}$
(e) $\frac{3}{20}$

- 5. If $f(x) = \ln(4 x^2)$, then the graph of f is increasing on
 - (a) [0,2)
 - (b) $(-\infty, -2)$
 - (c) (-2,2)
 - (d) $(-\infty, 0]$
 - (e) (-2,0)

- 6. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = x^4 2x^2 + 2$ in the interval [-1, 2] is
 - (a) 15
 - (b) 7
 - (c) 11
 - (d) 13
 - (e) 9

7. If
$$f(x) = e^{\sin^2(\pi x)}$$
, then $f'(x) =$

(a)
$$e^{\sin^2(\pi x)} \cos^2(\pi x)$$

(b)
$$\pi e^{\sin^2(\pi x)} \sin(2\pi x)$$

(c)
$$\pi e^{\sin^2(\pi x)} \cos(2\pi x)$$

(d)
$$\pi e^{\sin^2(\pi x)}$$

(e)
$$e^{\sin^2(\pi x)} \sin(\pi x)$$

8. The sum of all critical numbers of the function $f(x) = \frac{x^2 + 14}{\sqrt{4x + 1}}$ is

(a)
$$\frac{-1}{12}$$

(b) $\frac{2}{3}$
(c) $\frac{-2}{3}$
(d) 2
(e) $\frac{-7}{3}$

9. Let
$$f(x) = e^x g(x)$$
, with $g(1) = 1$, $g'(1) = 2$, and $g''(1) = 3$. Then $f''(1) = 3$.

- (a) *e*
- (b) 3*e*
- (c) e + 1
- (d) e + 3
- (e) 8*e*

10. If
$$f'(x) = \frac{3x^3 - \sqrt{x} + 1}{x}$$
 and $f(1) = 0$, then $f(3) =$

(a)
$$8 - 2\sqrt{3} - \frac{1}{9}$$

(b) $9 - 2\sqrt{3}$
(c) $26 - 2\sqrt{3} + \ln 3$
(d) $28 - 2\sqrt{3} + \ln 3$
(e) $10 - 2\sqrt{3} - \frac{1}{9}$

- 11. If $1200 \, cm^2$ of material is available to make a box with a square base and an open top, then the largest possible volume of the box is
 - (a) $4000 \, cm^3$
 - (b) $500 \, cm^3$
 - (c) $200 \, cm^3$
 - (d) $2000 \, cm^3$
 - (e) $1000 \, cm^3$

- 12. The slope of the line tangent to the curve $2x + \tan^{-1}(xy) = x^2y^3 + 2$ at the point (1,0) is
 - (a) 2
 - (b) -2
 - (c) 1
 - (d) -1
 - (e) 0

13.
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{x^{10}} =$$

(a) 0 (b) $\frac{2^{10}}{10}$ (c) ∞ (d) $\frac{-2^{10}}{10!}$

(e)
$$-\infty$$

14.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x =$$

- (a) e^2
- (b) e^{3}
- (c) e^{-4}
- (d) *e*
- (e) e^{-2}

- 15. The equation of the horizontal asymptote of the graph of $f(x) = \ln(1 + x^2) \ln(1 + 2x^2)$ is
 - (a) $y = -\ln 2$
 - (b) y = 2
 - (c) y = 1
 - (d) $y = 2 \ln 2$
 - (e) y = 0

- 16. If a and b are the values that make $f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$ differentiable, then a + b =
 - (a) −1
 - (b) 1
 - (c) $\frac{5}{3}$
 - (d) 0
 - (e) $\frac{1}{3}$

Term 181, Math 101, Final Exam

CODE 003

17. If
$$f(x) = \frac{(x+1)^3(x-2)\cos x}{3^x(2x+1)}$$
, then $f'(0) =$

- (a) 0
- (b) $-1+2 \ln 3$
- (c) -2
- (d) $1 3 \ln 3$

(e)
$$1+3 \ln 3$$

18. The number of vertical asymptotes of the function $y = \frac{x^2 - 4}{(x^2 + 2x - 8)(x^2 + x + 1)}$ is

- (a) 3
- (b) 1
- (c) 4
- (d) 2
- (e) 0

19. If $f'(x) = e^{(x-4)^3} (x^2 + x + 2)^3 (x-2)^3 (x-1)$, then f is decreasing on

- (a) (1,4)
- (b) $(4,\infty)$
- (c) (2,4)
- (d) $(-\infty, 2)$
- (e) (1, 2)

20. If
$$f(x) = \ln\left(\frac{1+x}{1+\sqrt{x}}\right)$$
, then $f'(1) =$

(a) 1 (b) 0 (c) $\frac{1}{4}$ (d) $\frac{1}{2}$ (e) $\frac{1}{3}$ 21. The graph of $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is concave up on

(a)
$$\left(\frac{5\pi}{4}, 2\pi\right)$$

(b) $\left(0, \frac{3\pi}{4}\right)$
(c) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$
(d) $\left(0, \frac{\pi}{4}\right)$
(e) $\left(\frac{7\pi}{4}, 2\pi\right)$

22. Let a > 0 and let $f(x) = x^2 + \frac{x}{a}$, $a \le x \le 2a$. The value of a, that makes the average rate of change of the function f on [a, 2a] the smallest possible, is

(a)
$$\frac{1}{\sqrt{5}}$$

(b) $\frac{1}{\sqrt{3}}$
(c) $\sqrt{2}$
(d) 1
(e) 2

- 23. Newton's Method is used to estimate the critical number of the function $g(x) = x^6 + 15x^2 + 30x + 90$. If we start with $x_1 = 0$, then $x_3 =$
 - (a) -0.7
 - (b) -1.3
 - (c) -0.9
 - (d) -0.5
 - (e) -1.1

- 24. The number of inflection points of $f(x) = x\sqrt{6-x}$ is
 - (a) 0
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 1

25. Which one of the following statements is **TRUE**?

- (a) If f has an absolute minimum at c, then f'(c) = 0
- (b) If f' exists and is non-zero for all x, then $f(1) \neq f(0)$.

(c) If
$$f'(x) = g'(x)$$
 for $0 < x < 1$, then $f(x) = g(x)$ for $0 < x < 1$.

- (d) $\lim_{x \to 0} \frac{x}{e^x} = 1$
- (e) If f and g are increasing on an interval I, then f g is increasing on I.

- 26. Two cars leave an intersection. One car travels north at 30 km/h and the other travels east at 40 km/h. How fast is the distance between them increasing at the end of 30 mins?
 - (a) $100 \, km/h$
 - (b) $50 \, km/h$
 - (c) $60 \, km/h$
 - (d) $25 \, km/h$
 - (e) $40 \, km/h$

- 27. If the volume of an expanding cube is increasing at the rate of $4 m^3/min$, how fast is its surface area increasing when the surface area is $24 m^2$?
 - (a) $3 m^2 / min$
 - (b) $4 m^2 / min$
 - (c) $2m^2/min$
 - (d) $8 m^2/min$
 - (e) $5 m^2/min$

28. If $\sinh(x f(x)) + \sinh(x) = \frac{3}{4}$ and $f(\ln(2)) = 0$ then $(\ln 2) f'(\ln 2) =$

(a)
$$-\frac{7}{4}$$

(b) $-\frac{1}{4}$
(c) $-\frac{5}{4}$
(d) $-\frac{9}{4}$
(e) $-\frac{3}{4}$

King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

CODE 004

CODE 004

Math 101 **Final Exam** 181 Saturday 22/12/2018 Net Time Allowed: 180 minutes

Name:

ID: _____ Sec: _____

Check that this exam has 28 questions.

Important Instructions:

- 1. All types of calculators, pagers or mobile phones are NOT allowed during the examination.
- 2.Use HB 2.5 pencils only.
- 3. Use a good eraser. DO NOT use the erasers attached to the pencil.
- Write your name, ID number and Section number on the examination paper and in the 4. upper left corner of the answer sheet.
- 5.When bubbling your ID number and Section number, be sure that the bubbles match with the numbers that you write.
- 6. The Test Code Number is already bubbled in your answer sheet. Make sure that it is the same as that printed on your question paper.
- 7. When bubbling, make sure that the bubbled space is fully covered.
- 8. When erasing a bubble, make sure that you do not leave any trace of penciling.

1. If
$$f(x) = e^{\sin^2(\pi x)}$$
, then $f'(x) =$

(a)
$$\pi e^{\sin^2(\pi x)} \cos(2\pi x)$$

(b)
$$e^{\sin^2(\pi x)} \sin(\pi x)$$

(c)
$$e^{\sin^2(\pi x)} \cos^2(\pi x)$$

(d)
$$\pi e^{\sin^2(\pi x)}$$

(e)
$$\pi e^{\sin^2(\pi x)} \sin(2\pi x)$$

- 2. If $\llbracket x \rrbracket$ represents the largest integer that is less than or equal to x, then $\lim_{x \to 2} (\llbracket x \rrbracket + \llbracket 2 x \rrbracket) =$
 - (a) 1
 - (b) 0
 - (c) 2
 - (d) does not exist
 - (e) -1

3. If
$$y = x \cosh(x^2)$$
, then $y'(1) =$

(a)
$$\frac{3e}{2} + \frac{1}{2e}$$

(b)
$$\frac{3e}{2} + \frac{3}{2e}$$

(c)
$$\frac{3e}{2} - \frac{1}{2e}$$

(d)
$$\frac{e}{2} + \frac{3}{2e}$$

(e)
$$\frac{e}{2} - \frac{3}{2e}$$

- 4. Consider the function $f(x) = x + e^x$. The value of c that satisfies the conclusion of the **Mean Value Theorem** on the interval [0, 1] is
 - (a) 1 e
 - (b) 0
 - (c) $\ln(e-1)$
 - (d) $\ln(1-e)$
 - (e) e 1

- 5. By using the linear approximation of $f(x) = \sqrt{100 + x}$ at a = 0, $\sqrt{100.5}$ is approximately equal to
 - (a) $\frac{77}{40}$ (b) $\frac{399}{40}$ (c) $\frac{3}{20}$ (d) $\frac{71}{20}$ (e) $\frac{401}{40}$

- 6. The sum of the absolute maximum and the absolute minimum values of the function $f(x) = x^4 2x^2 + 2$ in the interval [-1, 2] is
 - (a) 9
 - (b) 11
 - (c) 13
 - (d) 7
 - (e) 15

7. If $f(x) = \ln(4 - x^2)$, then the graph of f is increasing on

- (a) (-2,0)
- (b) (-2,2)
- (c) $(-\infty, 0]$
- (d) [0,2)

(e)
$$(-\infty, -2)$$

8.
$$\lim_{x \to \infty} \left(\frac{x+2}{x-1}\right)^x =$$

- (a) e^{-2}
- (b) e^2
- (c) e^{-4}
- (d) *e*
- (e) e^{3}

The sum of all critical numbers of the function $f(x) = \frac{x^2 + 14}{\sqrt{4x + 1}}$ is 9.

(a)
$$\frac{-7}{3}$$

(b) $\frac{2}{3}$
(c) $\frac{-1}{12}$
(d) 2
(e) $\frac{-2}{3}$

3

- If $1200 \, cm^2$ of material is available to make a box with a square base and 10. an open top, then the largest possible volume of the box is
 - $500\,cm^3$ (a)
 - $1000\,cm^3$ (b)
 - $200\,cm^3$ (c)
 - $2000\,cm^3$ (d)
 - (e) $4000 \, cm^3$

Term 181, Math 101, Final Exam

11. If
$$f'(x) = \frac{3x^3 - \sqrt{x} + 1}{x}$$
 and $f(1) = 0$, then $f(3) =$

(a) $28 - 2\sqrt{3} + \ln 3$

(b)
$$10 - 2\sqrt{3} - \frac{1}{9}$$

(c) $9 - 2\sqrt{3}$

(d)
$$8 - 2\sqrt{3} - \frac{1}{9}$$

(e)
$$26 - 2\sqrt{3} + \ln 3$$

- 12. The slope of the line tangent to the curve $2x + \tan^{-1}(xy) = x^2y^3 + 2$ at the point (1,0) is
 - (a) 1
 - (b) 0
 - (c) -1
 - (d) 2
 - (e) -2

13. Let $f(x) = e^x g(x)$, with g(1) = 1, g'(1) = 2, and g''(1) = 3. Then f''(1) =

- (a) e+3
- (b) *e*
- (c) e + 1
- (d) 8e
- (e) 3e

14.
$$\lim_{x \to 0} \frac{\cos(2x) - 1}{x^{10}} =$$

- (a) $-\infty$
- (b) 0

(c)
$$\frac{2^{10}}{10}$$

(d)
$$\infty$$

(e)
$$\frac{-2^{10}}{10!}$$

Term 181, Math 101, Final Exam

CODE 004

15. If
$$f(x) = \ln\left(\frac{1+x}{1+\sqrt{x}}\right)$$
, then $f'(1) =$

- (a) 0
- (b) $\frac{1}{4}$
- (c) $\frac{1}{2}$
- (d) $\frac{1}{3}$
- (e) 1

16. The number of vertical asymptotes of the function $y = \frac{x^2 - 4}{(x^2 + 2x - 8)(x^2 + x + 1)}$ is

- (a) 0
- (b) 3
- (c) 2
- (d) 1
- (e) 4

- 17. If a and b are the values that make $f(x) = \begin{cases} ax^3 & x \le 2\\ x^2 + b & x > 2 \end{cases}$ differentiable, then a + b =
 - (a) 1
 - (b) $\frac{5}{3}$
 - (c) 0
 - (d) -1
 - (e) $\frac{1}{3}$

18. If
$$f(x) = \frac{(x+1)^3(x-2)\cos x}{3^x(2x+1)}$$
, then $f'(0) =$

- (a) $1+3 \ln 3$
- (b) $1 3 \ln 3$
- (c) $-1+2 \ln 3$
- (d) -2
- (e) 0

- 19. The equation of the horizontal asymptote of the graph of $f(x) = \ln(1 + x^2) \ln(1 + 2x^2)$ is
 - (a) $y = -\ln 2$
 - (b) y = 2
 - (c) $y = 2 \ln 2$
 - (d) y = 0

(e)
$$y = 1$$

20. If $f'(x) = e^{(x-4)^3} (x^2 + x + 2)^3 (x-2)^3 (x-1)$, then f is decreasing on

- (a) (2,4)
- (b) (1,4)
- (c) $(-\infty, 2)$
- (d) (1,2)
- (e) $(4,\infty)$
21. The graph of $f(x) = \sin x + \cos x$, $0 \le x \le 2\pi$ is concave up on

(a)
$$\left(\frac{5\pi}{4}, 2\pi\right)$$

(b) $\left(\frac{7\pi}{4}, 2\pi\right)$
(c) $\left(0, \frac{3\pi}{4}\right)$
(d) $\left(0, \frac{\pi}{4}\right)$
(e) $\left(\frac{3\pi}{4}, \frac{7\pi}{4}\right)$

- 22. If the volume of an expanding cube is increasing at the rate of $4 m^3/min$, how fast is its surface area increasing when the surface area is $24 m^2$?
 - (a) $3m^2/min$
 - (b) $2m^2/min$
 - (c) $4m^2/min$
 - (d) $8 m^2/min$
 - (e) $5 m^2 / min$

Term 181, Math 101, Final Exam

CODE 004

23. If
$$\sinh(x f(x)) + \sinh(x) = \frac{3}{4}$$
 and $f(\ln(2)) = 0$ then $(\ln 2) f'(\ln 2) = 0$

(a)
$$-\frac{9}{4}$$

(b) $-\frac{1}{4}$
(c) $-\frac{5}{4}$
(d) $-\frac{3}{4}$
(e) $-\frac{7}{4}$

4

- 24.Two cars leave an intersection. One car travels north at $30 \, km/h$ and the other travels east at $40 \, km/h$. How fast is the distance between them increasing at the end of 30 mins?
 - $40 \, km/h$ (a)
 - (b) $50 \, km/h$
 - (c) $25 \, km/h$
 - (d) $60 \, km/h$
 - (e) $100 \, km/h$

- 25. The number of inflection points of $f(x) = x\sqrt{6-x}$ is
 - (a) 2
 - (b) 1
 - (c) 3
 - (d) 4
 - (e) 0

26. Newton's Method is used to estimate the critical number of the function $g(x) = x^6 + 15x^2 + 30x + 90$. If we start with $x_1 = 0$, then $x_3 =$

- (a) -1.3
- (b) -0.9
- (c) -0.7
- (d) -1.1
- (e) -0.5

CODE 004

27. Let a > 0 and let $f(x) = x^2 + \frac{x}{a}$, $a \le x \le 2a$. The value of a, that makes the average rate of change of the function f on [a, 2a] the smallest possible, is

(a)
$$\frac{1}{\sqrt{3}}$$

- (b) 1
- (c) $\sqrt{2}$
- (d) 2

(e)
$$\frac{1}{\sqrt{5}}$$

- 28. Which one of the following statements is **TRUE**?
 - (a) If f' exists and is non-zero for all x, then $f(1) \neq f(0)$.

(b) If
$$f'(x) = g'(x)$$
 for $0 < x < 1$, then $f(x) = g(x)$ for $0 < x < 1$.

(c)
$$\lim_{x \to 0} \frac{x}{e^x} = 1$$

- (d) If f has an absolute minimum at c, then f'(c) = 0
- (e) If f and g are increasing on an interval I, then f g is increasing on I.

Answer KEY

Q	MM	V1	V2	V3	V4
1	a	e	с	е	e
2	a	d	b	b	a
3	a	b	e	a	с
4	a	a	с	с	с
5	a	d	e	е	e
6	a	e	b	с	b
7	a	a	b	b	a
8	a	a	d	d	e
9	a	b	с	е	d
10	a	a	e	d	e
11	a	b	a	a	a
12	a	e	a	b	e
13	a	d	e	е	d
14	a	a	b	b	a
15	a	a	c	a	b
16	a	b	b	a	d
17	a	с	c	b	d
18	a	d	e	b	с
19	a	с	d	е	a
20	a	a	d	с	d
21	a	d	c	с	e
22	a	a	b	b	d
23	a	b	с	с	с
24	a	a	d	a	b
25	a	b	d	b	e
26	a	a	e	b	b
27	a	d	c	d	a
28	a	d	a	с	a