1. The slope of the tangent line to the curve $y = x^2 - e^x$ at the point (0, -1) is given by

(a)
$$\lim_{x \to 0} \frac{x^2 - e^x + 1}{x}$$

(b) $\lim_{x \to 0} \frac{x^2 - e^x - 1}{x}$

(c)
$$\lim_{x \to 0} \frac{x - e^x}{x}$$

(d)
$$\lim_{x \to 0} \frac{x - e^x}{x + 1}$$

(e)
$$\lim_{x \to 0} \frac{x + e^x + 1}{x + 1}$$

2. The vertical asymptote(s) of $f(x) = \frac{x^2 - x - 2}{x^2 - 4}$ is(are):

(a) x = -2(b) x = 2, x = -2(c) x = 2(d) y = 2, y = -2

- 3. $\lim_{x \to (2\pi)^+} \ln(\sin x) =$
 - (a) $-\infty$ (b) ∞ (c) 0 (d) 1
 - (e) e

4. If
$$f(x) = \begin{cases} [|x|] + [|-x|] & \text{if } x \le 0 \\ x - 1 & \text{if } x > 0 \end{cases}$$
, then $\lim_{x \to 0} f(x)$

- (a) is equal to -1
- (b) does not exist
- (c) is equal to 2
- (d) is equal to 1
- (e) is equal to 0

5. Which one of the following statements is **FALSE** ?

(a) If
$$\lim_{x \to 0} f(x) = \infty$$
 and $\lim_{x \to 0} g(x) = \infty$, then $\lim_{x \to 0} (f(x) - g(x)) = 0$.

(b) A function can have two different horizontal asymptotes.

(c) If f is continuous at 5 and
$$f(5) = 2$$
, then $\lim_{x \to 2} f(4x^2 - 11) = 2$.

- (d) A function can have infinitely many vertical asymptotes.
- (e) If f is continuous at a, then |f| is also continuous at a.

6.
$$\lim_{x \to 1} \frac{1 - \sqrt{8x - 7}}{x - 1} =$$

(a)
$$-4$$

- (b) ∞
- (c) 1
- (d) -8
- (e) 8

Page 4 of 10

MASTER

7. If
$$f(x) = \begin{cases} (x-b)^2 & \text{if } x \ge 4\\ \frac{|3-x|-1}{x-4} & \text{if } x < 4 \end{cases}$$
 and $\lim_{x \to 4} f(x)$ exists, then the value(s) of b is (are):

- (a) 3 and 5
- (b) 3
- (c) 2
- (d) $-3 \operatorname{and} 4$
- (e) 5

- 8. Let f(x) = 1 4x. The maximum value of $\delta > 0$ such that if $0 < \left| x + \frac{3}{2} \right| < \delta$ then |f(x) - 7| < 0.4equals to:
 - (a) 0.1
 - (b) 0.4
 - (c) 0.2
 - (d) 1.6
 - (e) 0.8

9. The function
$$f(x) = \frac{\sqrt{x^2 - 4}}{x^2 - 1}$$
 is continuous on

- (a) $(-\infty, -2] \cup [2, \infty)$
- (b) $[-2, -1) \cup (-1, 1) \cup (1, 2]$
- (c) $(-\infty, -2] \cup (-1, 1) \cup [2, \infty)$

(d)
$$(-\infty, -1) \cup (1, \infty)$$

(e)
$$[-2,2]$$

10. The displacement (in centimeters) of a particle moving along a straight line is given by the equation

 $s(t) = 2 \sin \pi t + 3 \cos \pi t$

where t is measured in seconds. The average velocity of the particle during the time period [1, 2] is

- (a) 6
- (b) 3
- (c) 2
- (d) 5
- (e) 0

MASTER

11. The function $f(x) = \frac{4+x|x|}{x+2}$

- (a) has a removable discontinuity at x = -2
- (b) has a jump discontinuity at x = -2
- (c) has a removable discontinuity at x = 0
- (d) has an infinite discontinuity at x = -2
- (e) is continuous at x = -2

12. If the graph of $f(x) = \frac{1 - e^x}{1 + 2e^x}$ has two horizontal asymptotes y = A and y = B, then A + B =

- (a) $\frac{1}{2}$ (b) $\frac{-1}{2}$ (c) 0 (d) 2
- (e) 1

13.
$$\lim_{x \to 3} \frac{2x - 6}{\frac{1}{x^2} - \frac{1}{9}} =$$
(a) -27
(b) -9
(c) 9
(d) 54

(e)
$$-3$$

14. $\lim_{x \to -\infty} \left[\left[\frac{1}{x} \right] \right]$

- (a) -1
- (b) 0
- (c) 1
- (d) does not exist
- (e) 2

MASTER

- 15. If $f(x) = \sqrt{1 4x}$, then the slope of the tangent line to the curve y = f(x) at x = a, given that a is in the domain of f(x), is equal to:
 - (a) $\frac{-2}{\sqrt{1-4a}}$

 (b) $\frac{2}{\sqrt{1-4a}}$

 (c) $\frac{4}{\sqrt{1-4a}}$

 (d) $\frac{-4}{\sqrt{1-4a}}$

(e)
$$\frac{4a}{\sqrt{1-4a}}$$

16. If
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Then $f'(0) =$

- (a) 0
- (b) ∞
- (c) 1
- (d) $-\infty$

(e)
$$\frac{1}{2}$$

MASTER

17. A possible formula for a function f that satisfies the following conditions: $\lim_{x \to +\infty} f(x) = 0, \quad \lim_{x \to 0^+} f(x) = -\infty, \quad \lim_{x \to 3^-} f(x) = \infty, \text{ is:}$

(a)
$$f(x) = \frac{(2-x)}{x^2(x-3)}$$

 $x = 2$

(b)
$$f(x) = \frac{x-2}{x^2(x-3)}$$

(c)
$$f(x) = \frac{x-2}{x(x-3)}$$

(d)
$$f(x) = \frac{2-x}{x(x-3)^2}$$

(e)
$$f(x) = \frac{2 - x^3}{x(x - 3)^2}$$

18. If f is continuous at x = 2 and $\lim_{t \to 1} \frac{t^2 f(2t) - 2t}{t^2 - 1} = 5$, then $\lim_{x \to 2} x f(x) = 1$

- (a) 4
- (b) -1
- (c) 1
- (d) -2
- (e) 8

MASTER

19.
$$\lim_{x \to \infty} \tan^{-1} \left(\frac{x^{2.1} - x^2}{x^2 + 1} \right) =$$

(a) $\frac{\pi}{2}$

- (b) $\frac{\pi}{4}$
- (c) $\frac{-\pi}{2}$
- (d) ∞

$$(e) \quad 1$$

- 20. Suppose f is continuous on [2, 6] and the **only** solutions of the equation f(x) = 7 are x = 2 and x = 5. If f(3) = 9, then
 - (a) f(4) must be greater than 7
 - (b) f(4) must be less than 7
 - (c) f(4) must be greater than 9
 - (d) f(4) must be less than 9
 - (e) f(4) must be greater than 8

Answer KEY

Q	MM	V1	V2	V3	V4
1	a	b	d	b	e
2	a	b	d	е	с
3	a	a	c	е	d
4	a	d	b	d	a
5	a	a	e	с	d
6	a	a	d	с	e
7	a	d	c	с	d
8	a	e	a	a	a
9	a	b	с	b	b
10	a	с	a	b	a
11	a	d	d	е	e
12	a	e	d	с	b
13	a	e	d	d	e
14	a	е	b	b	a
15	a	с	a	b	b
16	a	a	a	d	b
17	a	с	a	е	b
18	a	a	b	a	a
19	a	a	a	a	d
20	a	a	a	b	b