1. Solve the IVP: $y'' = \frac{1}{(x+1)^2}$, y(0) = 2, y'(0) = 1.

Solution.

 $y' = \int \frac{1}{(x+1)^2} dx + C_1 = -\frac{1}{x+1} + C_1, \text{ so } y = -\int \frac{1}{x+1} dx + C_1 x + C_2 = -\ln|x+1| + C_1 x + C_2.$ y(0) = 2 gives $C_2 = 2$ and y'(0) = 1 gives $C_1 = 2$. IVP solution is $y = -\ln|x+1| + 2x + 2$.

2. Find a general solution of the DE: $(3y^2 - y) x^2 \frac{dy}{dx} = (x - 1) y^4$. **Solution**. DE is $\frac{3y^2 - y}{y^4} dy = \frac{x - 1}{x^2} dx$ and so it is separable. Integration gives the family of solutions $-\frac{3}{y} + \frac{1}{2y^2} = \ln |x| + \frac{1}{x} + C$ (i.e. $x - 6xy = 2y^2 (Cx + x \ln |x| + 1)$.

3. Find a general solution of the DE: (cos x) y' + (sin x) y = 1 (-π/2 < x < π/2).
Solution. Standard form of DE is y' + (tan x) y = sec x. Integrating factor is y = e^{∫ tan xdx} = sec x. Hence y sec x = ∫ sec² xdx + C. This gives the family of solutions y = cos x (tan x + C) i.e. y = sin x + C cos x.

4. Verify that the following DE is exact; then solve it: $(e^y + y \cos x) dx + \left(xe^y + \sin x + \frac{1}{1+y^2}\right) dy = 0.$ Solution. Let $M = e^y + y \cos x$ and $N = xe^y + \sin x + \frac{1}{1+y^2}.$ Then $M_y = e^y + \cos x = N_x$, hence the DE is exact.

This means there is a function F (of x and y) such that $F_x = M$ and $F_y = N$. Hence $F = xe^y + y\sin x + g(y)$.

From $F_y = N$, we get $xe^y + \sin x + g'(y) = xe^y + \sin x + \frac{1}{1+y^2}$. So $g'(y) = \frac{1}{1+y^2}$, i.e. $g(y) = \tan^{-1} y$.

DE has family of solutions: $xe^y + y\sin x + \tan^{-1} y = C$.

5. <u>Use the adjoint matrix</u> to find the inverse of $A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & -1 \\ 0 & 1 & 1 \end{bmatrix}$. **Solution**. The cofactor matrix of A is $\begin{bmatrix} 4 & -2 & 2 \\ -1 & 1 & -1 \\ 3 & -1 & 3 \end{bmatrix}$. The adjoint of A is $\begin{bmatrix} 4 & -2 & 2 \\ -1 & 1 & -1 \\ 3 & -1 & 3 \end{bmatrix}^{T}$, i.e. $adjA = \begin{bmatrix} 4 & -1 & 3 \\ -2 & 1 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. Determinant of A is 2. We have $A^{-1} = \frac{1}{\det A}adjA$, hence $A^{-1} = \frac{1}{2} \begin{bmatrix} 4 & -1 & 3 \\ -2 & 1 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. 6. Determine whether the vectors u = (3, 2, 5), v = (1, -1, 3), w = (1, 4, -1) are linearly dependent or independent. If they are linearly dependent, write one of the vectors as a linear combination of the other two vectors.

Solution.

3	1	1]		1	2	-3	D 0.D	[1	2	-3	(1/r)D	[1	2	-3		[1	2	-3	
2	-1	4	$\xrightarrow{R_1-R_2}$	2	-1	4	$\xrightarrow{R_2-2R_1}$	0	-5	10	$\xrightarrow{(-1/5)R_2}$	0	1	-2	$\xrightarrow{R_3+7R_2}$	0	1	-2	
$\lfloor 5$	3	-1		5	3	-1	$R_3 - 5R_1$	0	-7	14	$(-1/5)R_2 $	0	-7	14		0	0	0	

The last matrix above is an echelon form of the matrix $[u \vdots v \vdots w]$ and contains a zero row, so the vectors u, v, w are linearly dependent.

Let xu + yv + zw = 0, then (using the echelon matrix obtained) y = 2z and x = -2y + 3z = -z. Putting z = 1 we get x = -1, y = 2. Hence -u + 2v + w = 0, i.e. w = u - 2v (or, if we want, u = 2v + w).

7. Express the vector v = (0, -2, 7) as a linear combination of the vectors

 $u_1 = (5, 1, 1), u_2 = (-1, 1, 4), u_3 = (3, 5, 2).$

Solution. Let $v = xu_1 + yu_2 + zu_3$. We have

$$\begin{bmatrix} 5 & -1 & 3 & 0 \\ 1 & 1 & 5 & -2 \\ 1 & 4 & 2 & 7 \end{bmatrix} \xrightarrow{R_1 \longleftrightarrow R_2} \begin{bmatrix} 1 & 1 & 5 & -2 \\ 5 & -1 & 3 & 0 \\ 1 & 4 & 2 & 7 \end{bmatrix} \xrightarrow{R_2 - 5R_1} \begin{bmatrix} 1 & 1 & 5 & -2 \\ 0 & -6 & -22 & 10 \\ 0 & 3 & -3 & 9 \end{bmatrix}$$
$$\xrightarrow{(-1/2)R_2} \begin{bmatrix} 1 & 1 & 5 & -2 \\ 0 & 3 & 11 & -5 \\ 0 & 3 & -3 & 9 \end{bmatrix} \xrightarrow{R_3 - R_2} \begin{bmatrix} 1 & 1 & 5 & -2 \\ 0 & 3 & 11 & -5 \\ 0 & 0 & -14 & 14 \end{bmatrix} \xrightarrow{(-1/14)R_3} \begin{bmatrix} 1 & 1 & 5 & -2 \\ 0 & 3 & 11 & -5 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

We obtain z = -1, 3y - 11 = -5 so y = 2, x + 2 - 5 = -2 so x = 1. Hence $v = u_1 + 2u_2 - u_3$.

- 8. For each of the following subsets of \mathbb{R}^4 , determine whether or not it is a subspace of \mathbb{R}^4 . (Justify your answers.)
 - (a) W_1 is the set of all vectors (x_1, x_2, x_3, x_4) such that $x_1^2 + x_2^2 = x_4$. **Solution**. Let u = v = (1, 0, 0, 1). Then $u, v \in W_1$ but $u + v = (2, 0, 0, 2) \notin W_1$. So W_1 is not a subspace of \mathbb{R}^4 .
 - (b) W_2 is the set of all vectors (x_1, x_2, x_3, x_4) such that $x_1 + x_4 = 3x_2 2x_3$. Solution. W_2 is the solution set of the homogeneous system (in one equation):

$$x_1 - 3x_2 + 2x_3 - x_4 = 0.$$

Hence W_2 is a subspace of \mathbb{R}^4 .