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1. The implicit solution of the initial-value problem 

2 sin 2𝑥 𝑑𝑥 + 𝑦 cos3 2𝑥 𝑑𝑦 = 0, 𝑦(0) = 2, 

is equal to: 

 

a) 𝒚𝟐 = 𝟒 − 𝐭𝐚𝐧𝟐 𝟐𝒙 

b) 𝑦2 = 4 + tan2 2𝑥 

c) 𝑦2 = 2 + 2 sec2 2𝑥 

d) 𝑦2 = 4 + tan 2𝑥 

e) 𝑦2 = 4 − 2 tan 2𝑥 
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2. If the differential equation 

(
1

3
𝑥3 + ln 𝑥 + 𝑥 sec 𝑦  tan 𝑦 + 𝑥) 𝑑𝑦 + (𝑥2𝑦 + 𝑦/𝑥 + 𝑺(𝒚)) 𝑑𝑥 = 0 

is EXACT, then 𝑺(𝟎) = 

 

a) 𝟏 

b) 0 

c) 
1

2
 

d) ln 2 

e) 2 
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3. The implicit solution of the differential equation 

(1 + 𝑥2)
𝑑𝑦

𝑑𝑥
+ 2𝑥𝑦 =

1

(1 + 𝑥2) 𝑦
 

is given by: 

 

a) (𝟏 + 𝒙𝟐)𝟐 𝒚𝟐 − 𝟐𝒙 = 𝑪 

b) (1 + 𝑥2)2 𝑦2 + 2𝑥 = 𝐶 

c) 𝑦2 − 2𝑥 (1 + 𝑥2) = 𝐶 

d) 𝑦2 + 2𝑥 (1 + 𝑥2) = 𝐶 

e) 𝑦2 − 2𝑥 (1 + 𝑥2)2 = 𝐶 
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4. The population of a country is assumed to increase at a rate proportional to the number of 

people present at time t. If the initial population is 1 million and this number is doubled in 2 

years, it will take the population to reach 4 million in: 

 

a) 4 years 

b) 5 years 

c) ln 4  years 

d) ln 8  years 

e) 5 ln 2  years 
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5. The function 𝑦1 = 𝑥2 is a solution of the differential equation 

(𝑥2 − 3𝑥 + 2)
𝑑2𝑦

𝑑𝑥2
+ (1 − 𝑥)

𝑑𝑦

𝑑𝑥
+ 4

𝑥 − 1

𝑥2
𝑦 = 0, 𝑥 > 2. 

The method of Reduction of Order produces the second solution  𝑦2 = 

 

a) 
𝟒−𝟑𝒙

𝟔𝒙
 

b) 
3𝑥−4

6𝑥
 

c) 
3−4𝑥

6𝑥2
 

d) 
4−3𝑥

6𝑥2
 

e) 
4

3𝑥2
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6. The solution 𝒚(𝒙) of the third order initial-value problem 

𝑑3𝑦

𝑑𝑥3
+ 2

𝑑2𝑦

𝑑𝑥2
−

𝑑𝑦

𝑑𝑥
− 2𝑦 = 0, 𝑦(0) = 0,   𝑦′(0) = 0,   𝑦′′(0) = 1, 

satisfies 𝒚(𝐥𝐧 𝟑) = 

 

a) 
𝟏𝟎

𝟐𝟕
 

b) 
1

27
 

c) 
4

27
 

d) 
1

6
 

e) 0 
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7. If  𝐷4 + 𝑎 𝐷3 + 𝑏 𝐷2 + 𝑐 𝐷 + 2  annihilates the function 
3𝑥 − cos 𝑥

𝑒𝑥
 

then the value of  𝒂 + 𝒃 + 𝒄  is equal to: 

 

a) 𝟏𝟕 

b) 15 

c) 16 

d) 18 

e) 19 
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8. Let 𝒚𝒑(𝒙) be the particular solution of the Cauchy-Euler differential equation 

𝑥2𝑦′′ − 4𝑥𝑦′ + 6𝑦 = 2𝑥4 + 𝑥2, 𝑥 > 0. 

Then 𝒚𝒑(𝒆−𝟏) = 

 

a) 𝒆−𝟒 

b) 𝑒−2 

c) 𝑒4 + 2𝑒2 

d) 𝑒2 − 2𝑒4 

e) 𝑒4 − 2𝑒2 
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9. The second order differential equation 

𝑦′′ − 3𝑥𝑦′ − 3𝑦 = 0, 

possesses two linearly independent power series solutions 𝒚𝟏(𝒙) and 𝒚𝟐(𝒙) about the 

ordinary point 𝑥0 = 0. Then the sum of the FIRST THREE NONZERO TERMS in 𝒚𝟏 and in 𝒚𝟐 

at 𝒙 = 𝟏 are: 

 

a) 
𝟐𝟗

𝟖
  and  

𝟏𝟑

𝟓
 

b) 
5

2
  and  

11

5
 

c) 
29

8
  and  

3

5
 

d) 
17

5
  and  2 

e) 
21

5
  and  

13

5
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10. 𝒙𝟎 = 𝟎 is a regular singular point of the differential equation  

3𝑥𝑦′′ + 2𝑥𝑦′ − 2𝑦 = 0 

Using the Frobenius method, the SUM OF THE FIRST THREE TERMS of the solution 𝒚(𝒙) at 

𝒙 = 𝟑 corresponding to the largest root of the indicial equation equals: 

 

a) 𝟑 

b) 0 

c) 
1

2
 

d) 
9

16
 

e) 
27

32
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11. The general solution of the first order homogenous system 

𝑋′ = ( 
1 −1 1
0 1 3
4 3 1

 )  𝑋 

is given by 

𝑋 = 𝑐1 ( 
𝑎
𝑏
1

 ) 𝑒𝜆1𝑡 + 𝑐2 ( 
𝑐
𝑑
1

 ) 𝑒𝜆2𝑡 + 𝑐3 ( 
𝑒
𝑓

16
 ) 𝑒−3𝑡, 𝜆1 ≠ 𝜆2 

 

Then 𝒂 ⋅ 𝒃 + 𝒄 ⋅ 𝒅 + 𝒆 ⋅ 𝒇 = 

 

a) 𝟕𝟖 

b) 75 

c) 81 

d) 84 

e) 87 
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12. Consider the initial-value problem 

𝑋′ = ( 
3 −18
2 −9

 )  𝑋, 𝑋(0) = ( 
1
0

 ) 

One eigenvector of this system corresponding to an incomplete eigenvalue 𝝀 is 𝐾1 = ( 
3
1

 ). 

Then the solution of the IVP is 𝑿(𝒕) = 

 

a) ( 
𝟔𝒕 + 𝟏

𝟐𝒕
 ) 𝒆−𝟑𝒕 

b) ( 
2𝑡 + 1

3𝑡
 ) 𝑒−3𝑡 

c) ( 
2𝑡 + 1

0
 ) 𝑒−3𝑡 

d) ( 
1
0

 ) 𝑒−3𝑡 

e) ( 
𝑡 + 1

𝑡
 ) 𝑒−3𝑡 
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13. Consider the nonhomogeneous system 

𝑋′ = 𝐴 𝑋 + ( 
sin 2𝑡
cos 2𝑡

 ) 

If the general solution of the associated homogeneous system is  

 

𝑋𝑐 = 𝑐1 𝑒𝑡 ( 
sin 2𝑡
cos 2𝑡

 ) + 𝑐2 𝑒𝑡 ( 
− cos 2𝑡
    sin 2𝑡

 ) , 

 

then the particular solution, 𝑿𝒑(𝒕), of the nonhomogeneous system AT 𝒕 = 𝟎 equals: 

 

a) ( 
𝟎

−𝟏
 ) 

b) ( 
−1
0

 ) 

c) ( 
0
1

 ) 

d) ( 
1

−1
 ) 

e) ( 
1
1

 ) 
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14. If the Matrix Exponential of 

𝐴 = ( 
0 0 0
3 0 0
5 1 0

 ) 

is given by 

𝑒𝐴𝑡 = ( 

1 0 0
ℎ1(𝑡) 1 0

ℎ2(𝑡) ℎ3(𝑡) 1
 ) , 

then 𝒉𝟏(𝟏) + 𝒉𝟐(𝟐) + 𝒉𝟑(𝟑) = 

 

a) 𝟐𝟐 

b) 17 

c) 19 

d) 20 

e) 23 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


