King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics

MATH 202 - Major Exam II - Term 173 Duration: 90 minutes

Name:	ID Number:
Section Number:	Serial Number:
Class Time:	Instructor Name:

Instructions:

- 1. Calculators and Mobile Phones not allowed.
- 2. Please write legibly. No credit for answers without steps.
- 3. Make sure that you have nine pages of problems (Total of nine Problems).

Question	Points	Maximum
Number		Points
1		10
2		8
3		8
4		10
5		16
6		10
7		14
8		16
9		8
Total		100

1. (10 Points) Verify that $y_1 = x^2$ and $y_2 = 1/x^2$ form a fundamental set of solutions of $x^2 y'' + x y' - 4 y = 0$ for all values of x belonging to the interval $(0, \infty)$.

2. (8 Points) $y_{p_1} = x^4/15$ is a particular solution of $x^2 y'' + 4 x y' + 2 y = 2 x^4$, while $y_{p_2} = x^2/3$ is a particular solution of $x^2 y'' + 4 x y' + 2 y = 4 x^2$ on an interval $(0, \infty)$. Use superposition principle to find particular solution of $x^2 y'' + 4 x y' + 2 y = 5 x^4 - 3 x^2$.

3. (8 Points) Without using the Wronskian, determine whether the set of functions $\{e^x, e^{-x}, sinh x\}$ is linearly dependent or linearly independent?

4. (10 Points) $y_1 = x \cos x$ is one solution of $x^2 y'' - 2 x y' + (x^2 + 2)y = 0$ with x > 0. Use REDUCTION of order method to find the second solution of this equation. 5. (16 Points) Solve the third order IVP given by:

$$y''' + 2 y'' + y' + 2y = 0,$$

 $y(0) = 0, y'(0) = 0, \text{ and } y''(0) = 1.$

6. (10 Points) Find a linear differential operator which annihilates

$$f(x) = \frac{3}{2} + x - \cos^2 x + x e^{5x} \sin(4x).$$

7. (14 Points) Use the method of UNDETERMINED coefficients to find the particular solution of $y'' - y = x + e^x$.

8. (16 Points) Find the general solution of the Cauchy-Euler equation

$$2 x^2 y'' + 3 xy' - y = x$$

on the interval $(0,\infty)$.

9. (8 Points) Transform the differential equation

$$6 x^2 y'' + 5 xy' - y = 2$$

to a constant coefficient equation.

(NOTE:Do not solve the resulting equation)