King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 101(07 & 12) Class Test III Summer 2018(173)

ID#:_____ NAME:_____

Serial#_____

- 1. If $y = 3^{\sqrt{x}} + (\sqrt{x})^3$, then y'(1) =.
- 2. Let $f(x) = \frac{4!}{ax+1}$, where a is a nonzero constant. If $f^{(5)}(0) = -(4!)^2$, then $a^5 =$
- 3. If c is the number satisfying the conclusion of the Mean Value Theorem for $f(x) = -4 + \sqrt{3x+1}$ on the interval [1,5], then c =
- 4. Which of the following statements is **TRUE** about the graph of the function $f(x) = x^2 18 \ln x$?
 - (a) The graph has one inflection point.
 - (b) The graph is concave upward on (0, 3).
 - (c) The graph is concave downward on $(3, \infty)$.
 - (d) The graph is increasing on (0, 3).
 - (e) The graph is decreasing on $(3, \infty)$.
- 5. The function $f(x) = 3\cos x \cos^3 x$, $0 < x < \frac{5\pi}{3}$, has critical points.
- 6. The asymptotes of the function $f(x) = \frac{x^7 x^6 2x^2}{x^6 + x^4 + x^2 + 1}$ are
- 7. $\lim_{h \to 0} \frac{\tan^{-1}(2x+h) \tan^{-1}(2x)}{h} = .$
- 8. A particle with position function $s(t) = t^3 3t^2 9t$, $t \in [0, 7]$, moves in the positive direction when $t \in (a, b)$. Then $b^a = .$

9. If
$$h(2) = \sqrt{2}$$
 and $h'(2) = -\sqrt{2}$, then $\frac{d}{dx}(\frac{h(x^2)}{x^2})|_{x=\sqrt{2}}$ is equal to

10.
$$\lim_{x \to \pi} \frac{\sin x}{\sin(\sin x)} =$$

- 11. If f(x) = xg(x), where f and g are differentiable function, f(2) = -6 and f'(2) = -5. The equation of the tangent line to the curve y = g(x) at x = 2 is
- 12. Let $f(x) = \begin{cases} \sqrt{x}e^x, & \text{when } x \ge 0; \\ \log_4(-x), & \text{when } x < 0. \end{cases}$ The value of $f'(1) + f'(\frac{-1}{\ln 4})$ equal to

13. If
$$f(x) = 5x + 3e^{7x}$$
, then $(f^{-1})'(3) =$

- 14. If $f(x) = (ex)^{\pi x}$, then $f'(\frac{1}{e}) =$
- 15. $\frac{d^{21}}{dx^{21}}(x\cos x) =$
- 16. A glass window has a shape of square with a semicircle on its top. Suppose that the area of the square is changing at the rate of $\frac{2}{e} cm^2/min$. Them the area of the semicircle will be changing at the rate of $R cm^2/min$, where R =
- 17. If $x_1 = 1$ is an approximation to the real root of the equation $x^3 + 5x 7$, then the next approximation x_2 given by Newton's Method is

18. If
$$f'(x) = (x - \frac{1}{\sqrt{x}})^2$$
 and $f(1) = 1$, then $f(4) =$

19. If
$$y = (3x+1)^{5/2} \sqrt{\frac{2x+2}{x^2+3}}$$
, then $y'(1) =$

- 20. The linearization L(x) of $f(x) = (7 3x)^{2/3}$ at a = 1 is
- 21. If y = L and y = M are the equations of the horizontal asymptotes to the graph of the function $f(x) = \frac{\pi}{2} \cos^{-1}(\frac{\sqrt{3x^2+1}}{2x+1})$, then L + M =

22.
$$\left[\cosh(\frac{3x}{2}) + \sinh(\frac{3x}{2})\right]^{4/3} =$$

- 23. $\frac{d}{dx} \left[2x \sinh(3x) + 2x \sin^{-1}x + \frac{2x}{\sqrt{1-x^2}} \right] =$
- 24. If $x^2 + y^3 = 10$, then $\frac{d^2y}{dx^2}|_{(x,y)=(3,1)} =$

Dr. M. R. Alfuraidan