MASTER

- 1. Let $s(t) = 3 + t e^{t}$ be the position function of a particle moving in a linear motion. Then the **average velocity** of the object over the time interval [0,3] is
 - (a) e^3
 - (b) $3e^3$
 - (c) $1 + e^3$
 - (d) $1 + 3e^3$
 - (e) $3 + 3e^3$

2. The function $f(x) = \frac{x^2 - 4x + 3}{x^2 - 5x + 4}$ has the vertical asymptote(s):

- (a) x = 4 only
- (b) x = 4 and x = 1
- (c) x = 1 only
- (d) x = 3 only
- (e) x = 4 and x = 3

MASTER

- 3. Let f(x) be a function such that f(1) = 1 and $\lim_{x \to 1} \frac{f(x) 1}{x 1} = \frac{1}{2}$. The equation of the tangent line to the graph of f(x) at x = 1 is given by
 - (a) 2y x 1 = 0
 - (b) y 2x + 1 = 0
 - (c) 2y + x + 1 = 0
 - (d) y 2x 1 = 0
 - (e) 2y 2x + 3 = 0

- $4. \quad \lim_{x \to 0^-} \ln\left(-\sin x\right) =$
 - (a) $-\infty$
 - (b) ∞
 - (c) 0
 - (d) 1
 - (e) e

5. The function
$$f(x) = \frac{x^2 - 6x - 16}{(x^2 - 7x - 8)\sqrt{x^2 - 4}}$$
 is continuous on

- (a) $(-\infty, -2) \cup (2, 8) \cup (8, \infty)$
- (b) $(-2, -1) \cup (2, 8)$
- (c) $(-\infty, -1) \cup (2, 8) \cup (8, \infty)$
- (d) $(-2, -1) \cup (-1, 2)$

(e)
$$(-\infty, -2) \cup (2, \infty)$$

- 6. The <u>number of discontinuities</u> of the function $f(x) = \frac{\ln(\cos^2 x)}{x^2 1}$ in the interval $(0, 3\pi)$ is
 - (a) 4
 - (b) 5
 - (c) 3
 - (d) 2
 - (e) ∞

- 7. Given that $\lim_{x\to 2} (5x+2) = 12$, and using the (ε, δ) definition, the largest possible value of δ that corresponds to $\varepsilon = 0.05$ is:
 - (a) 0.01
 - (b) 0.05
 - (c) 0.10
 - (d) 0.02
 - (e) 0.001

8.
$$\lim_{x \to 3} \frac{1 - \sqrt{4 - x}}{3 - x} =$$

- (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$
- (c) 0
- (d) 3
- (e) does not exist

MASTER

9. From the given graph of f(x), the function

- (a) f is not differentiable at -2, 1, 3
- (b) f is differentiable at -2, -1, 0
- (c) f is not differentiable at -3, 1, 4
- (d) f is differentiable at 0, 2, 3
- (e) f is not differentiable at 0.5, 1, 1.5

10. Let

$$f(x) = 4 - \sqrt{2x + 1}$$

then f'(4) =

(a) $-\frac{1}{3}$ (b) $\frac{1}{3}$ (c) $-\frac{1}{6}$ (d) $\frac{1}{6}$ (e) $\frac{1}{4}$

- 11. Let f(x) be continuous on the interval [-3, 6]. If f(-3) = -1 and f(6) = 3, which of the following must be true?
 - (a) f(c) = 1 for at least one c between -3 and 6
 - (b) f(c) = 0 for at least one c between -1 and 3
 - (c) f(c) = 5 for at least one c between -3 and 6
 - (d) $-1 \le f(x) \le 3$ for all x between -3 and 6
 - (e) f(0) = 0

12.
$$\lim_{x \to 0} \cos\left(x^2 \sin\frac{3}{2x}\right) =$$

- (a) 1
- (b) 2
- (c) 3
- (d) 0
- (e) does not exist

MASTER

13. The horizontal asymptote(s) of
$$f(x) = \frac{|x| + \sin x}{x+1}$$
 is (are):

- (a) y = -1 and y = 1
- (b) y = -1 only
- (c) y = 1 only
- (d) y = 0, y = 1 and y = -1

(e)
$$y = 0 \text{ and } y = 2$$

14. If
$$\lim_{x \to 5} f(x) = 2$$
, then $\lim_{x \to 2} x^2 f(x+3) =$

- (a) 8
- (b) 4
- (c) 5
- (d) 0
- (e) does not exist

Page 8 of 10

MASTER

15. If the function
$$f(x) = \begin{cases} 3x^2 - a & \text{if } x > 1 \\ a + b & \text{if } x = 1 \\ x - 2b & \text{if } x < 1 \end{cases}$$

is continuous then a - 2b =

- (a) 2
- (b) 0
- (c) 1
- (d) 5
- (e) 3

16. If $\lim_{x \to 0} [f(x) + g(x)] = 2$ and $\lim_{x \to 0} [f(x) - g(x)] = 1$ then $\lim_{x \to 0} [f(x) \cdot g(x)] = 1$

- (a) $\frac{3}{4}$ (b) 1 (c) 3 (d) -1
- (e) $\frac{3}{2}$

MASTER

17. The function
$$f(x) = \frac{x^2}{x^3 - x}$$
 has

- (a) one removable and two infinite discontinuities
- (b) two removable and one infinite discontinuities
- (c) three infinite discontinuities
- (d) three removable discontinuities
- (e) one jump and two infinite discontinuities

18. Let f(x) = [n - x] - [x + 1] where n is an integer and [x] is the greatest integer less than or equal to x.

$$\lim_{x \to n^+} f(x) - \lim_{x \to n^-} f(x) =$$

- (a) -2
- (b) 2
- (c) 1
- (d) -1
- (e) 0

- 19. The equation of the line tangent to the graph of $y = x^2$ and intersects the x-axis at x = 1 is
 - (a) y = 4x 4
 - (b) y = 4x 2
 - (c) y = 4x + 4
 - (d) y = 4x + 2

(e)
$$y = 2x + 2$$

20. Let f be defined everywhere and satisfies the following conditions

f(1) = 5, f(3) = 21, and $f(a+b) - f(a) = 4ab + 2b^2$

for all real numbers a and b. Then f'(3) =

- (a) 12
- (b) 10
- (c) 9
- (d) 14
- (e) 15

Answer KEY

Q	MM	V1	V2	V3	V4	V5
1	a	b	a	e	d	d
2	а	a	b	d	е	с
3	a	a	d	b	с	d
4	a	b	с	b	a	e
5	a	d	с	с	с	e
6	a	b	a	b	d	с
7	a	e	d	с	d	a
8	a	b	a	d	е	a
9	a	d	d	b	е	b
10	a	b	с	с	b	a
11	a	с	a	a	b	b
12	a	e	a	b	е	e
13	a	a	d	d	с	d
14	a	d	e	b	с	a
15	a	c	d	a	d	a
16	a	a	с	b	a	e
17	a	с	a	e	с	с
18	a	b	a	b	е	a
19	a	d	с	с	е	d
20	a	e	с	e	b	b