King Fahd University of Petroleum and Minerals Department of Mathematics and Statistics STAT-361 Operations Research I ¹ Final Exam Four Problems, May 14th, 2018 ²

Problem 1 (25 pts)

Consider the following linear program (P):

 $\min_{\substack{x_1, x_2 \\ \text{s.t.}}} 3x_1 + 3x_2 \\ x_1 + 3x_2 \ge 4, \\ 3x_1 + 4x_2 \ge 4, \\ x_1, x_2 \ge 0.$

(a) Solve the linear program (P) graphically. (5 points)

 $^{^{1}}$ Dr. Slim Belhaiza (c)

²This is an open book exam. The exam lasts 120 minutes.

(b) **Formulate** the dual linear program (D) associated to the program (P) and **solve** it using the Revised Simplex Method. (15 points)

••

(c) Write few words to explain that the solutions in (a) and (b) match. (5 points)

Problem 2 (25 pts)

Consider the following linear program:

 $\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} 5x_1 + 3x_2 + 4x_3$ s.t. $x_1 + 2x_2 + 2x_3 \le 3,$ $x_1 + 2x_2 + x_3 \ge 4,$ $3x_1 + x_2 + x_3 \ge 5,$ $x_1, x_2, x_3 \ge 0.$

Solve the linear program using the Dual Simplex algorithm.

5

..

Problem 3 (25 Points)

Consider the following transportation problem. The problem involves 3 plants supplying 4 customer zones. The following table 1 displays the unit transportation costs, the supplies and the demands. Find the optimal solution to this problem.

Demand Nodes \rightarrow	1	2	3	4	
Supply Nodes \downarrow			Costs		Offer
1	3	3	3	6	700
2	1	4	2	5	800
3	5	2	5	4	600
Demand	500	500	500	600	

Table 1: Data for problem 3

You can use the following tables. You have to use the Least Cost initialization method, otherwise you are subject to -5 points.

Interation 1

Demand Nodes	1	2	3	4	
1					700
2					800
3					600
Demand	500	500	500	600	

Interation 2

Demand Nodes	1	2	3	4	
1					700
2					800
3					600
Demand	500	500	500	600	

Interation 3

Demand Nodes	1	2	3	4	
1					700
2					800
3					600
Demand	500	500	500	600	

Interation 4

Demand Nodes	1	2	3	4	
1					700
2					800
3					600
Demand	500	500	500	600	

Interation 5

Demand Nodes	1	2	3	4	
1					700
2					800
3					600
Demand	500	500	500	600	

Problem 4 (25 pts)

Tasks	Condition	Duration (days)
a	_	4
b	_	6
с	after a	3
d	after b	4
е	after c and d	5
f	after e	3
g	after d	4
h	after f and g	6
i	after g and h	5
k	after h and i	4

Consider the following project scheduling problem detailed in table 2.

Table 2: Data for problem 4

(i). Draw the graph representing the interdependence between the tasks of the project. (10 pts)

(ii). Find the shortest possible duration of the project. (10 pts)

(*iii*).Find the critical tasks and the critical tasks. (5 pts)