King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 531 (Real Analysis) Major Exam II Spring 2018(172)- 120 minutes

ID#:	NAME:
//	

Notation: \mathbb{R} = the real numbers, \mathbb{N} = the natural numbers, m = Lebesgue measure. Instructions: Work any three problems.

- (1) (a) Prove or disprove: If $\{f_k\}_{k=1}^{\infty}$ is uniformly integrable over a set E and $\{f_n\} \to f$ pointwise *a.e.* on E, then f is integrable over E.
 - (b) Let \mathcal{F} be a family of functions, each of which is integrable over E. Show that \mathcal{F} is uniformly integrable over E if and only if for each $\varepsilon > 0$, there is a $\delta > 0$ such that for each $f \in \mathcal{F}$,

if
$$A \subseteq E$$
 is measurable and $m(A) < \delta$, then $\left| \int_A f \right| < \varepsilon$.

- (2) (a) Let $\{f_n\} \to f$ in measure on E and g be a measurable function on E that is finite *a.e.* on E. Show that $\{f_n\} \to g$ in measure on E if and only if f = g *a.e.* on E.
 - (b) Let f and each f_n be integrable and $\int |f_n f| dm \to 0$. Show that $f_n \to f$ in measure.

(3) A real-valued function f defined on an interval [a, b] satisfies a Lipschitz-condition with constant M if $|f(y) - f(x)| \le M|y - x|$ for all $x, y \in [a, b]$. Prove that f satisfies a Lipschitz condition with constant M if and only if

- (i) f is absolutely continuous on [a, b], and
- (ii) $|f'(x)| \le M m a.e.$

(4) (a) Let f be integrable over [0, 1]. Show that

$$exp\left[\int_{0}^{1} f(x) \ dx\right] \le \int_{0}^{1} exp(f(x)) \ dx$$

(b) Compute $TV_{[0,50]}(e^x)$, the total variation of e^x on the interval [0,50].

Dr. M. R. Alfuraidan