King Fahd University of Petroleum and Minerals Department of Mathematics & Statistics Math 531 (Real Analysis) Major Exam I Spring 2017-2018(172)- 120 minutes

ID#: NAM	E:
----------	----

Notation: \mathbb{R} = the real numbers, \mathbb{N} = the natural numbers, m = Lebesgue measure. Instructions: Give a detail solution.

- (1) (a) A collection \mathcal{C} of subsets of \mathbf{X} is an algebra with the following property: if $E_n \in \mathcal{C}$ and $E_n \subseteq E_{n+1}$, $n = 1, 2, \cdots$, then $\bigcup_{n=1}^{\infty} E_n \in \mathcal{C}$. Prove that \mathcal{C} is a σ -algebra.
 - (b) Let $f : [a, b] \to [-\infty, \infty]$ be a measurable function. Suppose that f takes the value $\pm \infty$ only on a set of (Lebesgue) measure zero. Prove that for any $\varepsilon > 0$ there is a positive number M such that |f| < M, except on a set of measure less than ε .

- (2) (a) Assume that m^* is an outer measure on $2^{\mathbf{X}}$ and pick $A \subseteq C \subseteq \mathbf{X}$. Show that if a set B is m^* -measurable and satisfies $A \subseteq B$ and $m^*(A) = m^*(B)$, then $m^*(C) = m^*(B \cup C)$.
 - (b) Let $\{f_n\}$ be a sequence of Lebesgue measurable functions on a set $E \subset \mathbb{R}$, where E is of finite Lebesgue measure $(m(E) < \infty)$. Suppose that there is M > 0 such that $|f_n(x)| \leq M$ for $n \geq 1$ and for all $x \in E$, and suppose that $\lim_{n \to \infty} f_n(x) = f(x)$ for each $x \in E$. Use Egoroff's theorem to prove that

$$\int_{E} f(x) \, dx = \lim_{n \to \infty} \int_{E} f_n(x) \, dx.$$

- (3) Let f(x) be a real-valued Lebesgue integrable function on [0, 1].
 - (a) Prove that if f > 0 on a set $E \subset [0, 1]$ of positive measure, then

$$\int_{E} f(x) \, dx > 0.$$

(b) Prove that if

$$\int_{[0,t]} f(x) \, dx = 0, \ for \ each \ t \in [0,1],$$

then f(t) = 0 for almost all $t \in [0, 1]$.

- (4) (a) Suppose $f : \mathbb{R} \to \mathbb{R}$ is measurable. Use the definition of measurability to prove that for every integer $n \ge 2$, the function f^n defined by $(f^n)(x) = (f(x))^n$ is also measurable. [Note: In your proof you should not use the fact that the product of measurable functions is measurable.]
 - (b) Set $f_n(x) = \frac{n + \cos(nx)}{2n + 1}$, for $x \in (0, +\infty)$ and $n \in \mathbb{N}$. Evaluate with proof $\lim_{n \to \infty} \int_0^n f_n(x) dx$.

- (5) (a) Show that the monotone convergence theorem may not hold for decreasing sequences of functions.
 - (b) Let $Q = [0,1] \times [0,1] = \{(x,y) \mid 0 \le x \le 1, 0 \le y \le 1\}$ and $f : Q \to \mathbb{R}$. Assume that $x \to f(x,y)$ is a measurable function for each fixed value of $y \in [0,1]$ and the partial derivative $\frac{\partial f}{\partial y}$ exists. Suppose there is a function g that is integrable over [0,1] such that

$$\left|\frac{\partial f}{\partial y}(x,y)\right| \le g(y), \text{ for all } (x,y) \in Q.$$

Prove that

$$\frac{d}{dy}\left[\int_{0}^{1} f(x,y) \, dx\right] = \int_{0}^{1} \frac{\partial f}{\partial y}(x,y) \, dx, \text{ for all } y \in [0,1].$$