FINAL EXAM MATH 499 Special Topics Course in General Relativity Semester 172

Time Allowed 3 Hours

Maximum Points: 140

- **Q1**. Given a Lorentzian metric $g_{ab} = (1, -1, -r^2, -r^2 \sin^2 \theta)$ answer the following:
 - a) What is its signature. (3 points)
 - b) Find the Ricci tensor components for this metric and justify your answer. (2 Point)
- **Q2.** Assume that a tensor in 2-dimensional Cartesian space has components T^{11} and T^{12} . Find $T^{\hat{1}\hat{1}}$ and

 $T^{\hat{1}\hat{2}}$ under a coordinate transformation given by $x = r \cos \vartheta$ and $y = r \sin \vartheta$. (5 Points)

- **Q3.** Consider a 2-dimensional metric $ds^2 = dt^2 dx^2$. Find the form of this metric under the transformation defined by $t = X \sinh T$ and $x = X \cosh T$. (5 Points)
- **Q4.** Solve geodesic equation in a 2-dimensional Cartesian metric $ds^2 = dt^2 dx^2$. (5 Points)
- **Q5.** Consider a metric given by $ds^2 = X^2 dt^2 4dX^2$. Solve this equation for the trajectory photons in this metric. **(10 Points)**
- **Q6.** Give number of Killing vectors admitted by Minkowski metric? Identify these Killing vectors with conservation laws? **(10 Points)**
- **Q7.** Show that the Killing vector $x\partial_y y\partial_x$ represents a rotational symmetry. **(10 Points)**
- **Q8.** For the metric $ds^2 = \phi(r)dt^2 dx^2 dy^2 dz^2$, find R^{0}_{101} . (5 Points)
- **Q9.** Use the second Bianchi identity $R^a_{b[cd;e]} = 0$ to construct Einstein tensor. (10 Points)
- **Q10.** Write solution of the vacuum Einstein field equations in polar coordinates. Discuss its essential and coordinate singularities. What defines event horizon of this metric? **(15 Points)**
- **Q11.** Briefly explain what are the three classical tests of general Relativity? Derive an expression that shows that the light grazing the surface of a gravitational source will be deflected. **(15 Points)**
- Q12. Derive an expression for the Schwarzschild metric in Kruskal-Szekeres coordinates. (20 Points)
- **Q13.** Assume a stress-energy-momentum tensor given by $T_{ab} = (\rho_o + p)u_a u_b pg_{ab}$, with $u^a = e^{\nu/2} \delta_o^a$. Assuming ρ_o is a constant, p(r) and $ds^2 = e^{\nu(r)} dt^2 - e^{\lambda(r)} dr^2 - r^2 d\theta^2 - r^2 \sin^2 \theta d\phi^2$, find equation of hydrostatic equilibrium arising as a consequence of $T_{;b}^{1b} = 0$. (15 Points)
- **Q14.** Discuss singularities of a metric that represent an exact solution of the Einstein-Maxwell equations given by Reissner-Nordstrom metric. **(10 Points)**

FINAL EXAM MATH 499 Special Topics Course in General Relativity Semester 172

Time Allowed 3 Hours 140

Maximum Points:

- 1. No calculators and mobile phones allowed.
- 2. Show your work to answer questions.

Question No	Points	Max Points
1		5
2		5
3		5
4		5
5		10
6		10
7		10
8		5
9		10
10		15
11		15
12		20
13		15
14		10
Total		140