EXAM 1 MATH 499 Special Topics Course in General Relativity Semester 172

Time Allowed 2 Hours

Maximum Points: 100

- Q1. Solve the equation for which the Lie derivative of the metric tensor is zero, i.e., $L_{\xi}g = 0$. Solve the resulting equation in plane polar coordinates.
- Q2. A metric admits a time-like Killing's vector $\partial / \partial t$. What conservation law this vector admits?
- Q3. Write down the geodesic equations. Solve them for the surface of a unit sphere with metric $(1, \sin^2 \theta)$.
- Q4. Find an expression for the Riemann Christoffel curvature tensor R^a_{bcd} . Using the metric tensor, write it in a totally covariant form R_{abcd} . Using this covariant form, give all the symmetry properties of this tensor.
- Q5. Give the expression for Einstein tensor. From this tensor construct vacuum Einstein field equations.
- Q6. In a static, spherically symmetric metric express all the independent Einstein field equations in terms of the metric tensor. Without solving these equations, give solutions of these equations in vacuum.