King Fahd University of Petroleum and Minerals

Department of Mathematics and Statistics

Math 430 Final Exam – 2017–2018 (172)

Allowed Time: 180 minutes

Name:	
ID #:	
Section #:	Serial Number:

Instructions:

- 1. Write clearly and legibly. You may lose points for messy work.
- 2. Show all your work. No points for answers without justification.
- 3. Calculators and Mobiles are not allowed.

Problems:

Question $\#$	Grade	Maximum Points
1		12
2		10
3		6
4		8
5		10
6		12
7		12
8		10
9		10
Total:		90

Q:1 (4 + 4 + 4 points) (a) Determine the set of points that satisfy the equation |z+3| = |z-2|. (b) Find all the cube roots of $\sqrt{2} + i\sqrt{2}$. (c) Find all numbers z such that $e^{iz} = 100$.

Q:2 (6 + 4 points) (a) Prove that the function $f(z) = e^x \cos(y) + ie^x \sin(y)$ is entire, and find its derivative in terms of z. (b) Show that $u(x,y) = 3x^2y - y^3 - x$ is harmonic in the whole plane.

Q:3 (6 points) Evaluate $\int_C \frac{1+z}{z} dz$, where C is the right half of the circle |z| = 1 from z = -i to z = i.

 ${\bf Q:4}$ (8 points) Use Cauchy's integral formula for derivatives to evaluate

$$\int_{|z|=1} \frac{z-1}{z^4 + 3iz^3} \, dz.$$

Q:5 (6 + 4 points) (a) Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for (i) 1 < |z|, (ii) 0 < |z-1| < 1.

(b) Show that z = 0 is an essential singularity of $f(z) = z^3 e^{\frac{1}{z}}$.

Q:6 (6 + 6 points) (a) Use Cauchy's residue theorem to evaluate

(b) Show that
$$\int_{0}^{2\pi} e^{\cos\theta} \cos(n\theta - \sin\theta) d\theta = \frac{2\pi}{n!}.$$

Q:7 (6 + 6 points) (a) Let $|F(z)| \leq \frac{M}{R^k}$ for $z = Re^{i\theta}$, where k > 0 and M are constants. Prove that

$$\lim_{R \to \infty} \int_C e^{imz} F(z) dz = 0,$$

where C is the semicircular arc of radious R $(0 \le \theta \le \pi)$ and m is a constant. (b) Define meromorphic function. Define Argument principle and use it to evaluate

$$\int \frac{f'(z)}{f(z)} dz,$$

where $f(z) = \frac{(z-8)^2 z^3}{(z-5)^4 (z+2)^2 (z-1)^5}.$

Q:8 (6 + 4 points) (a) Define conformal mapping. Find all points where the complex mapping $f(z) = \sin(z)$ is conformal.

(b) Find the images of the points 0, 1 + i, i and ∞ under the Mobius transformation

$$w = \frac{(2z+1)}{(z-i)}.$$

Q:9 (6 + 4 points) (a) Let $f_1(z) = \frac{z+2}{z+3}$, $f_2(z) = \frac{z}{z+1}$. Find $f_1^{-1}(f_2(z))$. (b) Show that $w = \frac{i(1-z)}{1+z}$ maps the unit disk |z| < 1 one to one and onto the upper kalf plane Im(w) > 0.