King Fahd University of Petroleum & Minerals				
Department of Mathematics & Statistics				
Math 430 Exam 03				
The Second Semester of 2017-2018 (172)				

<u>Time Allowed</u>: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		9
2		11
3		8
4		10
5		13
Total		51

Q1: (2 + 7 points) (a) Define simply connected domain.

(b) State the Cauchy's integral theorem and use it to evaluate

$$\int_C \frac{1}{z^4 - 1} dz$$
, where C is the circle $x^2 + (y - 1)^2 = 1$

Q2: (4 + 7 points) (a) Use Cauchy's integral formula(s) to evaluate

$$\int_{|z|=2} \frac{z^3+3}{z(z-i)^2} dz$$

(b) State and prove Cauchy's inequality.

Q3: (8 points) State the maximum modulus theorem and use it to find the maximum value of $|(z^2 + 3z - 1)|$ in the disk $|z| \le 1$.

Q4: (5 + 5 points) (a) Fnd the radius convergence of the series $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k!} (z-1-i)^k$. Also, find a domain in which convergence absolutely holds.

(b) Find an explicit formula for the analytic function f(z) that the Maclaurin expansion $\sum_{k=1}^{\infty} k^2 z^k$ (Write all steps).

Q5: (5 + 8 points) (a) Let $f(z) = \sum_{k=1}^{\infty} \frac{k^3}{3^k} z^k$. Compute $\int_{|z|=1} \frac{f(z)}{z^7} dz$,

(b) Compute the first four terms in the Taylor series of $f(z) = \frac{\cos(z)}{z^{12} + 1}$ about $z_0 = 0$. Also, compute the coefficient of the z^{12} term in the Taylor series of f(z) about 0.