King Fahd University of Petroleum & Minerals			
Department of Mathematics & Statistics			
Math 430 Major Exam I			
The Second Semester of $2017-2018$ (172)			

Time Allowed: 90 Minutes

Name:	ID#:
Section/Instructor:	Serial #:

- Mobiles and calculators are not allowed in this exam.
- Provide all necessary steps required in the solution.

Question $\#$	Marks	Maximum Marks
1		8
2		8
3		13
4		8
5		14
Total		51

(Q1:) (4 + 4)

(a) Solve the following system for z_1 and z_2 and write your answer in standard form a + ib:

$$3z_1 + (1-i)z_2 = 2 - 3i$$

 $(1+2i)z_1 + iz_2 = 1.$

(b) Show both analytically and graphically that $|z - 1| = |\overline{z} - 1|$.

(Q2:) (4+4)

(a) If z_1 and z_2 are arbitrary complex numbers, then show that

$$|z_1 + z_2| \le |z_1| + |z_2|$$

by using the identities $(|z|^2=z\bar{z}, Re\ z=\frac{z+\bar{z}}{2}, |Re\ z|\leq |z|)$

(b) Express $\frac{1+i}{\sqrt{3}-i}$ in terms of polar forms.

```
(Q3:) (5 + 4 + 4)
```

(a) Find all solutions to the equation $z^2 + (1+i)z + 5i = 0$ in terms of a + ib.

- (b) Solve the equation $z^8 = 1$.
- (c) Evaluate $(-\sqrt{3}-i)^{30}$.

(Q4:) (4+4)

(a) Describe the set of ppoints z in the complex plane that satisfy |z| = |z - i|.

(b) Let S be a subset of C. Prove that S is closed if and only if its complement C - S is an open set.

(Q5:) (5 + 5 + 4)

(a) Show that $w = \frac{1}{2}(z + \frac{1}{z})$ maps the circle |z| = r $(r > 0, r \neq 0)$ onto the ellipse.

(b) Find the image of the right half plane $Re(z) \ge 1$ under the mapping w = (-1+i)z-2+3i and represent the mapping graphically.

(c) Use $\epsilon - \delta$ definition to show that $\lim_{z \to i} z^2 = -1$