MATH411, Section 1 Spring 2018, Term 172 Final Exam

ID: Name:

Answer the following questions. Time: 120 minutes.

- 1. (20 pts) Identify and determine the nature of the critical points of $f(x, y) = \cos x \sin y$.
- **2.** (40 pts) Let $f : \mathbb{R}^2 \to \mathbb{R}^2$, be defined as

$f(x,y) = (x^2 - y^2, 2xy).$

- (a) Prove that f is one-to-one for all $(x, y) \in \mathbb{R}^2$ such that y < 0.
- (b) Find $D_{f^{-1}}(\frac{3}{4}, 1)$.
- 3. (40 pts) Consider the following system of equations

 - (i) Show that this system has a unique solution $(u, v) = f(x, y, z) = (f_1(x, y, z), f_2(x, y, z)$ near the point (1, 1, 1, 1, 1).
 - (ii) Find $D_f(1, 1, 1)$.

4. (40 pts) Let $R \subset \mathbb{R}^n$ be a rectangle, $f : R \to \mathbb{R}$ be a bounded function and \mathcal{P} a partition of R. Prove that

$$U_{\mathcal{Q}}(f) \leq U_{\mathcal{P}}(f),$$

where Q is a refinement of \mathcal{P} and $U_{\mathcal{P}}(f), U_{\mathcal{Q}}(f)$ are the upper *Darboux* sums of f with respect to \mathcal{P} and Q respectively.

5. (40 pts) Show that the function $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$\varphi(u,v) = \left(u, \frac{u+v}{2}\right)$$

is a change of variables in \mathbb{R}^2 and use it to evaluate

$$\int_{\Omega^* = \varphi(\Omega)} x^5 (2y - x) e^{(2y - x)^2},$$

where

$$\Omega^* = \left\{ (x, y) : \frac{x}{2} \le y \le \frac{x}{2} + 1, 0 \le x \le 2 \right\}.$$

and Ω is a bounded simple set of \mathbb{R}^2 .