MATH411, Section 1 Spring 2018, Term 172 Exam 2

ID: Name:

Answer the following questions.

- **1.** (20 pts) Let $f : \Omega \to \mathbb{R}^m$ where Ω is an open subset in \mathbb{R}^n , and $a \in \Omega$.
 - (a) Define, $D_f(a)$, the derivative of f at a.
 - (b) Show that $D_f(a)$ is unique, assuming that f is differentiable at a.
- **2.** (20 pts) Let $f : \Omega \to \mathbb{R}$ where Ω is an open subset in \mathbb{R}^n , and $a, u \neq 0 \in \Omega$.
 - (a) Define, $D_u f(a)$, the directional derivative of f at a in the direction of u.
 - (b) Show that $|D_u f(a)|$ is maximum in the direction of the gradient of f at a.

3. (40 pts) For the functions $f_1, f_2 : \mathbb{R}^3 \to \mathbb{R}, f : \mathbb{R}^3 \to \mathbb{R}^2, g : \mathbb{R}^2 \to \mathbb{R}^3$ defined as

$$\begin{array}{rcl} f_1(x,y,z) &=& x-y,\\ f_2(x,y,z) &=& xyz,\\ f(x,y,z) &=& (f_1(x,y,z),f_2(x,y,z)),\\ g(x,y) &=& (xy,x^2,y^2), \end{array}$$

compute

(i) $D_u f_1(1, 1, 1)$ where $u = (u_1, u_2, u_3) \in \mathbb{R}^3$, (ii) $D_{(f \circ g)}(1, 1)$ using the chain rule,

(iii) $H_{f_2}(1,1,1)$, the Hessian of f_2 at (1,1,1),

(iv) $D_g^2(1,1)$, the second derivative of g at (1,1).

4. (20 pts) About the point (0,0), find the second order Taylor's formula for $f(x,y) = \cos x \cos y$ and show that

$$\lim_{(x,y)\to(0,0)}\frac{R_3(x,y)}{\|(x,y)\|^2}=0$$

where $R_3(x, y)$ is second-order remainder. (Hint: compute $|R_3(x, y)|$)