King Fahd University of Petroleum & Minerals Department of Mathematics and Statistics Math 345: Group Theory First Exam, Spring Semester 172 (120 minutes) Jawad Abuhlail

Show FULL details.

Q1. (10 points) Show that every subgroup of a cyclic group is cyclic.

Q2. (10 points) Give an example of a group G with an element g_n of order n for every $n \in \mathbb{N}$, and an element g of infinite order.

Q3. (10 points) Show that for each $n \in \mathbb{N} \setminus \{1\}$, the group $\mathbb{Z}_{2^{n-1}}$ has exactly *n* subgroups.

Q4. (10 points) Find the number of cyclic groups of order 4 in: (a) D_6

(b) D_8

Q5. (10 points) Show that if *H* is a subgroup of S_n with |H| odd, then $H \leq A_n$.

Q6. (10 points) Find the number of elements in A_5 of order: (a) 2

(b) 5

Q7. (10 points) Show that S_4 is not isomorphic to D_{12} .

Q8. (30 points) Prove or disprove:

(a) The *centralizer* of any *non-identity* element in a group is Abelian.

(b) If G is a group with a cyclic subgroup H_n of order n for every $n \in \mathbb{N}$, then G is cyclic.

(c) Every infinite group has an infinite number of subgroups.

Bonus (5 points) Give an example of a group G and a *proper* subgroup H of G such that $G \simeq H$.

GOOD LUCK