1) Use the 64-bit long real format to find the decimal equivalent of the following floatingpoint machine number

2) Find the second Taylor polynomial P₂(x) for the function f (x) = (x - 1) ln x about x₀ = 1. Approximate $\int_{0.5}^{1.5} f(x) dx$ using $\int_{0.5}^{1.5} P_2(x) dx$. Compute the relative error in this approximation.

Name:	ID:		Sec	<u>:</u> 1(9:00-9:50)	2(10:00-10:50)
	MATH-321	Term-172	ClassQuiz1		

1) Consider the fixed point method

$$x_n = \sqrt{2 - x_{n-1}}$$
, $x_0 = 0.5$

Will it converge? Why? If it converges, to what value?

Name:	<u>ID:</u>		Sec:	1(9:00-9:50)	2(10:00-10:50)
	MATH-321	Term-172	ClassQuiz5		

1) Let $f(x) = -x^3 - \cos(x)$. With $p_0 = -1$ and $p_1 = 0$, find p_3 **a.** Use the Secant method. **b.** Use the method of False Position.

2) Write MATLAB code for Newton's method to find a root of $f(x) = x - \cos(x)$ using $x_0 = 1$ and $tol = 10^{-4}$.

clear; clc;

Name:	<u>ID:</u>		<u>Sec</u> : $1_{(9:00-9:50)}$ $2_{(10:00-10:50)}$
	MATH-321	Term-172	ClassQuiz4

1) Show that $g(x) = \pi + 0.5 \sin(x/2)$ has a unique fixed point on $[0, 2\pi]$.

2) Estimate the number of iterations required to achieve 10^{-2} accuracy, and compare this theoretical estimate to the number actually needed.

Name:	<u>ID:</u>		<u>Sec</u> :	1(9:00-9:50)	2(10:00-10:50)
	MATH-321	Term-172	ClassQuiz3		

1) Find a bound for the number of bisection method iterations needed to achieve an approximation with accuracy 10^{-4} to the solution of $x^3 - x - 1 = 0$ lying in the interval [1, 2].

2) Use the Bisection method to find solutions accurate to within 10^{-4} for $x^3 - x - 1 = 0$ on the interval [1, 2].

Name:	ID:		Sec	1 (9:00-9:50)	2(10:00-10:50)
	MATH-321	Term-172	ClassQuiz2		