Department of Mathematics and Statistics, KFUPM Math 280, Term 172 Exam 3, April 08, 2018, Duration: 120 minutes

Name:

ID:

Exercise 1(10points, 5-5).

Let V be a vector space of finite dimension $n, T: V \mapsto V$ a linear transformation on V and B and S bases for V.

- (1) Prove that $[T]_{BB}$ and $[T]_{SS}$ are similar.
- (1) Frote that [1]_{BB} and [1]_{SS} are similar. (2) Assume that n = 3 and let $P = \begin{pmatrix} 2 & 3 & 2 \\ 2 & -1 & 4 \\ 3 & 2 & 0 \end{pmatrix}$, the transition matrix from Bto S and $[T]_{BB} = \begin{pmatrix} 2 & 3 & 2 \\ 2 & -1 & 4 \\ 3 & 2 & 0 \end{pmatrix}$. Find $[T]_{SS}$.

Exercise 2(15points, 5-5-5).

- Let ${\cal M}$ and ${\cal N}$ two similar square matrices.
- (1) Prove that ${\cal M}$ and ${\cal N}$ have the same determinant.

(2) Prove that for every real number λ , $det(M - \lambda I) = det(N - \lambda I)$ (det. is the determinant)

(3) Express N^n in terms of M^n .

Exercise 3(20points, 5-5-5-5).

- Let $V = \mathbb{R}^4$ be the standard inner product space u = (1, 1, 1, 1) and v = (8, 2, 2, 0)(1) Determine the angle θ between u and v.
- (2) Find the scalar projection and the vector projection z of u onto v.
- (3) Verify that u z is orthogonal to z.
- (4) Compute ||u z||, ||z|| and ||u|| and verify Pythagore's law.

Exercise 4 (15points, 5-5-5). Let $V = \mathbb{R}^3$ be the standard inner product space and W the subspace of V spanned by u = (1, 2, 1). (1) Find the orthogonal subspace W^{\perp} of W. (2) Find a basis B of W^{\perp} and its dimension. (3) Prove that $V = W \bigoplus W^{\perp}$.

Exercise 5(10points, 5-5). Let $V = \mathbb{R}^3$ endowed with a mapping defined by $(u|v) = x_1y_1 + 2x_2y_2 + 3x_3y_3$ for every $u = (x_1, x_2, x_3)$ and $v = (y_1, y_2, y_3)$. (1) Verify that (.|.) is an inner product on V.

(2) Let $S = \{e_1, e_2, e_3\}$ be the standard basis of V. Express (u|v) in the form $u^t A v$ for a matrix A to be determined.

Exercise 6(15points, 5-5-5).

Let (V, (.|.) be an inner product space of finite dimension n and W a subspace of V.

(1) Prove that any finite family of orthogonal vectors is linearly independent. (2) Prove that W^{\perp} is a subspace of V. (3) Prove that if B_1 is a basis of W and B_2 is a basis of W^{\perp} , then $B_1 \cup B_2$ is a basis of V.

- **Exercise 7**(15points, 5-10). Let $V = \mathbb{R}^3$ be the standard inner product space and $B_1 = \{(1, 1, 1), (1, 0, 1), (0, 1, 1)\}$. (1) Verify that B_1 is a basis for V. (2) Use Gram-Shmidt process to find an orthonormal basis B_2 of V.