Department of Mathematics and Statistics, KFUPM Math 280, Term 172 Exam 2, March 18, 2018, Duration: 120 minutes

Name:

ID:

Exercise 1(10points, 5-5). Determine whether the given vectors span \mathbb{R}^3 or not. Justify. (1) $v_1 = (1, 2, 1), v_2 = (1, 0, 1), v_3 = (2, 0, 1).$ (2) $v_1 = (0, 2, 1), v_2 = (1, 1, 1), v_3 = (1, 5, 3), v_4 = (2, 4, 3).$

Exercise 2(10points, 5-5). Which one of the following subsets is a subspace of the corresponding vector space. (1) $W = \{(a, b, c) \in \mathbb{R}^3 | a + b = 2c\}.$ (2) $W = \{(a, b, c) \in \mathbb{R}^3 | a^2 + b^2 + c^2 \leq 1\}.$

 $\mathbf{2}$

Exercise 3(20points, 5-5-5-5).

Let $V = \mathbb{R}$ be the vector space over the field \mathbb{Q} of rational numbers and $W = := \{a + b\sqrt{2} + c\sqrt{3} | a, b, c \in \mathbb{Q}\}.$

- (1) Prove that W is a subspace of V.
- (2) Prove that $\{1, \sqrt{2}, \sqrt{3}\}$ are linearly independent.
- (3) Find a basis and the dimension of W, $dim_{\mathbb{Q}}(W)$.
- (4) Find a an infinite set of linearly independent vectors of V.

Exercise 4 (15points, 5-5-5).

Let $V = \mathbb{P}_2 := \{f \in \mathbb{R}[X] | deg(f) \leq 2\}, S = \{1, X, X^2\}$ the standard basis of Vand $B = \{1 + X, 1 + X^2, 1 + X + X^2\}$. (1) Prove that B is a basis for V.

- (2) Find the transition matrix P from B to S.
 (3) Find the coordinate vector of f = 4 + 3X + 7X² in the basis B.

Exercise 5(15points, 5-5-5).

Let V be a vector space over a field $\mathbb{F},\,B_1,\,B_2,\,B_3$ three bases of V, P the transition matrix from B_2 to B_1 and Q the transition matrix from B_3 to B_2 . (1) Express the transition matrix N from B_3 to B_1 in terms of P and Q. (2) Express the transition matrix M from B_1 to B_3 in terms of P and Q.

(2) Express the transition matrix *M* from
$$B_1$$
 to B_3 in terms of *P* and *Q*.
(3) Assume that $V = \mathbb{R}^3$, $P = \begin{pmatrix} 2 & 3 & 2 \\ 2 & -1 & 4 \\ 3 & 2 & 0 \end{pmatrix}$, $Q = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ and $[x]_{B_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Express $[x]_{B_1}$.

Exercise 6(15points, 5-5-5).

(1) Let A be an $n \times n$ matrix. Prove that A is invertible if and only if rank(A) = n.

(1) Let *A* be an n < n matrix. Trove that *A* is invertible if *a* Let $A = \begin{pmatrix} 2 & 3 & 2 & 4 \\ 2 & -1 & 4 & 4 \\ 3 & 2 & 0 & 6 \\ 1 & 0 & 1 & 2 \end{pmatrix}$. (2) Find a basis and the dimension of the row space of *A*. (2) Find a basis and the dimension of the row space of *A*.

(3) Find a basis and the dimension of the row space of A.

- **Exercise 7**(15points, 5-5-5-5). Let $V = \mathbb{R}^3$ and $T: V \longrightarrow V$ defined by T(a, b, c) = (b + c, a + c, a + b). (1) Verify that T is a linear transformation. (2) Find ker(T), dim(ker(T)), Im(T) and dim(Im(T)).

- (3) Find the matrix representing T is the standard basis B of V.