Department of Mathematics and Statistics, KFUPM Math 280, Term 172 Exam 1, February 25, 2018, Duration: 120 minutes Name and ID

Exercise 1(10 points).

Use the **augmented matrix and reduced echelon form** to solve the following system.

 $\begin{pmatrix} x & -y & +z & = 1\\ 2x & +y & -z & = -1\\ 2x & +4y & +14z & = 8 \end{pmatrix}$

Exercise 2(10 points).

(1) Under which conditions on a and b, the system (S) below has a unique solution.

 $\begin{pmatrix} x & -y & +z & = & 1 \\ 2x & +y & -& az & = & -1 \\ 2x & +& 4y & +& 14bz & = & 1 \end{pmatrix}$

(2) Without any calculations show that the system (S_1) has no solution. $\begin{pmatrix} x & -y & +z & = 1 \\ 2x & +y & +15z & = -1 \\ 2x & +4y & +28z & = 1 \end{pmatrix}$

Exercise 3(15 points).

Recall that a square matrix A is symmetric if $A = A^T$ and skew symmetric if $A^T = -A.$

A = -A. (1) Let A by any square matrix. Prove that A = M - N where M is symmetric and N is skew-symmetric.

(2) Application: Write the matrix $\begin{pmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \\ 3 & 3 & 4 & 4 \\ 4 & 4 & 3 & 3 \end{pmatrix}$ as a difference of symmetric

Exercise 4 (10 points).

	$\binom{2}{2}$	1	2	
Use Gauss-Jordan Method to find the inverse (if it exists) of the matrix	1	2	1	
	$\sqrt{3}$	1	2 /	1
			,	

Exercise 5 (15 points).

	(x	+	3y	+	z	=	1	/
Use Cramer method to solve the system (S):		2x	+	y	+	z	=	5	
	(.	-2x	+	2y	—	z	=	-8	Ϊ

Exercise 6(15 points).

Exercise 6(15 points).
Let
$$N = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{pmatrix}$$
 and $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$
(1) Find $N^2 N^3$ and N^n for every $n \ge 3$

(1) Find N^2 , N^3 and N^n for every $n \ge 3$. (2) Use question (1) to find A^n for every $n \ge 2$ [Hint: Write A = N + I]. (3) Use question (2) to find A^{101} .

Exercise 7(10 points). Let $A = \begin{pmatrix} 2 & 3 & 2 \\ 2 & -1 & 4 \\ 3 & 2 & 0 \end{pmatrix}$. (1) Find the adjoint matrix adj(A) of A. (2) Find the inverse of the matrix A using its adjoint.

7

Exercise 8(15 points).

(1) Let M and N be two non-singular matrices. Are M + N and MN non-singular? Justify.

(2) Find all 3×3 matrices A such that AB = BA for every 3×3 matrix B.