Jame:	ID#:	Serial #:
Jame:	ID#:	Serial #:

1. [10pts] Let P, Q, R be statements. Is the logical equivalence

 $P \longrightarrow (Q \longrightarrow R) \equiv (P \land Q) \longrightarrow R$

true? Justify.

Solution. We can use a truth table to show that the logical equivalence is true. A shorter way is as follows.

 $P \longrightarrow (Q \longrightarrow R) \equiv \sim P \lor (\sim Q \lor R) \equiv (\sim P \lor \sim Q) \lor R \equiv \sim (P \land Q) \lor R \equiv (P \land Q) \longrightarrow R$

2. [10pts] Let A, B, C be sets, $A \neq \emptyset$.

(a) Suppose $A \cap B = A \cap C$. Is it true that B = C? Justify.

Solution. No, take $A = B = \{0\}$, $C = \{0, 1\}$, then $A \cap B = A \cap C = \{0\}$ but $B \neq C$.

(b) Suppose $A \times B = A \times C$. Prove that B = C.

Proof. We first prove that $B \subseteq C$. Let $b \in B$. Since $A \neq \emptyset$, we can choose an element $a \in A$. We have $(a, b) \in A \times B$, so $(a, b) \in A \times C$, i.e. $b \in C$. Similarly, $C \subseteq B$. Hence B = C.

3. [10pts] (a) Find subsets X, Y of $\{1, 2, 3\}$ such that $\mathcal{P}(X \cup Y) \not\subseteq \mathcal{P}(X) \cup \mathcal{P}(Y)$.

Solution. Take $X = \{1\}, Y = \{2\}$. Then $\{1, 2\} \in \mathcal{P}(X \cup Y)$ but $\{1, 2\} \notin \mathcal{P}(X)$ (since $2 \notin X$) and $\{1, 2\} \notin \mathcal{P}(Y)$ (since $1 \notin Y$).

(b) Let A, B be sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Proof. Let $S \in \mathcal{P}(A) \cup \mathcal{P}(B)$. Suppose first that $S \in \mathcal{P}(A)$, then $S \subseteq A \subseteq A \cup B$, so that $S \in \mathcal{P}(A \cup B)$. Similarly, if $S \in \mathcal{P}(B)$, we obtain $S \in \mathcal{P}(A \cup B)$. This proves $\mathcal{P}(A)$ and $\mathcal{P}(B)$ are both subsets of $\mathcal{P}(A \cup B)$ so that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

4. [10pts] Let x, y be real numbers.

(a) Using properties of absolute value, prove that $|x + y| - |x - y| \le 2|x|$.

Proof. $2|x| + |x - y| = |2x| + |y - x| \ge |2x + (y - x)| = |x + y|$.

(b) Prove that if |x| < |y|, then $x^2 - 2xy + 3y^2 \ge 0$. Is it true that $x^2 - 2xy + 3y^2 > 0$? Justify.

Solution.

- *Proof.* We have $x^2 2xy + 3y^2 = (x y)^2 + 2y^2 \ge 0$ for all real numbers. Hence the statement to prove is trivially true.
- It is true that $x^2 2xy + 3y^2 > 0$ when |x| < |y|: This is because |x| < |y| implies $x \neq y$ i.e. $(x y)^2 > 0$, hence $(x y)^2 + 2y^2 > 0$ i.e. $x^2 2xy + 3y^2 > 0$.

[Note that |x| < |y| also implies that $y^2 > 0$ and also that if we do not assume |x| < |y|, then $x^2 - 2xy + 3y^2 > 0$ is not always true: take x = y = 0.]

5. [10pts] Let x, y be integers.

(a) Prove that if $4|(x^2 + y^2)$, then x and y are even.

Proof. We use the contrapositive and prove that if x and y have different parity or if both are odd, then $x^2 + y^2$ is not divisible by 4.

If x and y have different parity, then x^2 and y^2 also have different parity and so $x^2 + y^2$ is odd and cannot be divisible by 4.

If x and y are odd, then there are integers h, k such that x = 2h + 1, y = 2k + 1. In this case, $x^2 + y^2 = 4(k^2 + k + h^2 + h) = 2$, which is not divisible by 4.

(b) Prove that if 3|5x, then 3|x.

Proof. If 3|5x, then 3|(6x - 5x) (because 3|6x), i.e. 3|x.

[Note. This problem can also be solved using congruences mod 4 in (a) and mod 3 in (b).]

6. [10pts] Let $a, b \in \mathbb{Z}$.

(a) Prove that if $a \equiv 2 \pmod{6}$ and $b \equiv 1 \pmod{4}$, then $2a - 3b \equiv 1 \pmod{12}$.

Proof. If $a \equiv 2 \pmod{6}$ and $b \equiv 1 \pmod{4}$, then $2a \equiv 4 \pmod{12}$ and $3b \equiv 3 \pmod{12}$. Hence $2a - 3b \equiv 1 \pmod{12}$.

(b) Prove that 5 a if and only if $a^4 \equiv 1 \pmod{5}$.

Proof. Suppose 5 a. Then $a \equiv \pm 1 \pmod{5}$ or $a \equiv \pm 2 \pmod{5}$. In the first case, $a^4 \equiv 1 \pmod{5}$; and in the second case, $a^4 \equiv 16 \equiv 1 \pmod{5}$.

Conversely, if $a^4 \equiv 1 \pmod{5}$, then clearly a is not divisible by 5 (otherwise, $a \equiv 0 \pmod{5}$) and then $a^4 \equiv 0 \pmod{5}$.