Math 202 – Quiz 1 (Term 172)

Name:	ID #:

Problem 1 (4 points):

Solve the following initial value problem
$$2y' - y\sin x = 2\sin x, \quad y\left(\frac{\pi}{2}\right) = 0$$

$$Sol. \quad y' - y \frac{\sin x}{2} = \sin x$$

$$M(x) = \int \frac{\sin x}{2} dx = \frac{\cos x}{2}$$

$$So \quad the \quad solution \quad yM = \int \sin x e^{-\frac{2\pi}{2}} dx + C$$

$$let \quad v = \frac{\cos x}{2}, \quad dv = -\frac{\sin x}{2} dx$$

$$\int \sin x e^{-\frac{2\pi}{2}} dx = -2\int e^{u} du = -2e^{u} = -2e^{\frac{2\pi}{2}}$$

$$Thus \quad yM = -2e^{\frac{2\pi}{2}} + C$$

$$= \int y = -2 + Ce^{\frac{2\pi}{2}}$$

$$y(\frac{\pi}{2}) = -2 + C = 0 = Ce^{\frac{2\pi}{2}}$$

$$\int y = -2 + 2e^{\frac{2\pi}{2}}$$

$$\int \int y = -2 + 2e^{\frac{2\pi}{2}}$$

$$\int \int y = -2 + 2e^{\frac{2\pi}{2}}$$

Problem 2 (3 points): Find a one-parameter solution of the equation

$$\frac{y' + \frac{2x}{\tan y} = 0}{dx} = \frac{2x}{\tan y}$$

$$\Rightarrow \frac{1}{\tan y} dy = -2x dx$$

$$\frac{\sin y}{\cos y} dy = -2x dx$$

$$\Rightarrow \frac{1}{\cos y} = -x^2 + C$$

$$\Rightarrow \frac{1}{\cos y} = \frac{x^2}{\cos y} + C$$

$$\Rightarrow \frac{1$$

Problem 3 (3 points): Check that the following differential equation is not exact and find an integrating factor so that it becomes exact (**Do not solve it**)

Sol.
$$M = y(x+y+1)dx + (x+2y)dy = 0$$

$$M = y(x+y+1), \quad N = x+2y$$

$$\frac{\partial M}{\partial y} = x+2y+1, \quad \frac{\partial N}{\partial x} = 1$$

$$\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \iff D \in \text{ is not exact.}$$

$$\frac{A'(x)}{A'(x)} = \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} = \frac{x+2y+1-1}{x+2y} = 1$$

$$So \quad A'(x) = A(x)$$

$$= \frac{A'(x)}{A'(x)} = \frac{A(x)}{A'(x)} = \frac{A(x)}{A(x)} = \frac{A(x)}{A(x)}$$