Name:

KFUPM ID:

Exercise 1

Let L be a linear differential operator such that

$$L(e^x) = x^2 + 1$$
, and $L(xe^x) = x^3 + 3$

Find a particular solution of the differential equation

$$L(y) = \frac{x^2}{2} \left(1 - \frac{x}{3} \right).$$

Exercise 2

- 1. Show that $y_1 = e^x$ and $y_2 = xe^{x^2}$ are linearly independent functions on \mathbb{R} .
- 2. Show that $f_1 = \cos(3x)$ and $f_2 = \cos^2(3x/2)$, $f_3 = 1$ are linearly dependent functions on \mathbb{R} .

Exercise 3

Solve the differential equation

$$x^{2}y'' - (2x^{2} + x)y' + (x^{2} + x)y = 0,$$

given that $y_1 = e^x$ is a solution.

Exercise 4

Solve the differential equation

$$(D^3 - 7D^2 + 16D - 12)y = 0,$$

given that $y_1 = e^{2x}$ is a solution.