
Additional Exercises
Math 202: Sections 2.2 & 2.3

Dr. Othman Echi and Dr. Saber Trabelsi

Department of Mathematics & Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

February 3, 2018

T his is a list of exercises with corrections. We
do not pretend that this list covers entirely
the whole material of the indicated sections,

and we warmly recommend to not stop practicing
after finishing these exercises. Never forget that
knowledge is a treasure, but practice is the key to
it.

1 Statement

Exercise I

Solve the IVP

dy

dx
=
xy − 3x− 2y + 6

xy − 2x− 3y + 6
, y(0) = 1. (1)

Exercise II

Find an implicit solution of the IVP

y′ =
sinx

cos y
e− sin y−cos x, y(

π

2
) = 0. (2)

Exercise III

Solve the IVP

x e2x+cos y dx+ sin y dy = 0, y(0) =
π

2
. (3)

Exercise IV

Solve the IVP

sinx dx+ 2y cosx dy = 0, y(0) = 1. (4)

Exercise V

Solve the linear DE

(y + 1)
dy

dx
+ (y + 2)x = 2ye−y. (5)

Exercise VI

Show that the DE

dy

dx
=

y

yey − 2x
, (6)

is linear in x and find its solutions.

Exercise VII

Solve the DE

t
dy

dx
+ y − t4 ln t = 0, (7)

and find its interval of validity.

Exercise VIII

Solve the initial value problem

x2(x− 2)
dy

dx
+ x(x− 2)y = 2, y(1) = 1, (8)

and give the interval of definition of the solution.

Exercise IX

Find the solution of the following initial value problem

(1 + x2)
dy

dx
+ 2xy = f(x), y(0) = 0, (9)

on R, where

f(x) =

 x if x < 1,

2x− 1 if x ≥ 1.

2 Correction

Exercise I

Observe that

xy − 3x− 2y + 6 = x(y − 3)− 2(y − 3)

= (x− 2)(y − 3),
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and

xy − 2x− 3y + 6 = x(y − 2)− 3(y − 2)

= (x− 3)(y − 2).

Thus, the DE in the IVP (1) is equivalent to

dy

dx
=
x− 2

x− 3

y − 3

y − 2
,

which is clearly separable. Therefore, separating vari-
ables, we get

x− 2

x− 3
dx =

y − 2

y − 3
dy.

Integrating, we have∫
x− 2

x− 3
dx =

∫
y − 2

y − 3
dy + c

⇔
∫
x− 3 + 1

x− 3
dx =

∫
y − 3 + 1

y − 3
dy + c

⇔
∫ (

1 +
1

x− 3

)
dx =

∫ (
1 +

1

y − 3

)
dy + c

⇔ x+ ln |x− 3| = y + ln |y − 3|+ c.

The initial condition y(0) = 1 leads to

ln 3 = 1 + ln 2 + c⇔ c = ln
3

2
− 1.

Eventually, the solution of the IVP (1) is given by the
implicit relation

x+ ln |x− 3| = y + ln |y − 3|+ ln
3

2
− 1.

Exercise II

The DE in the IVP (2) is equivalent to

y′ = sinx e− cos x e
− sin y

cos y
,

which is clearly separable. Separating the variables,
we obtain

cos y esin y dy = sinx e− cos x dx.

Integrating this equality, we get

esin y = e− cos x + c.

Now, the initial condition leads clearly to

c = 0.

It follows that the solution of the IVP (2) is given by
the relation

esin y = e− cos x ⇔ sin y = − cosx⇔ y = sin−1 (− cosx) .

The interval of validity of the solution is (0, π) which
is the largest interval containing π

2 such that y(x) is

differentiable on and cos y 6= 0 (check that y is not
differentiable at 0 and π. Also, observe that at x = 0
and x = π, one has cos(y) = 0).

Exercise III

The DE in the IVP (3) is equivalent to

xe2x dx = − sin ye− cos y dy,

which is clearly separable. Integrating this equality, we
obtain ∫

xe2x dx = −
∫

sin ye− cos y dy + c.

Now, using integration by parts, we can write∫
xe2x dx =

1

2
xe2x − 1

2

∫
e2x dx

=
1

2

(
x− 1

2

)
e2x,

and
−
∫

sin ye− cos y = −e− cos y.

Thus
1

2

(
x− 1

2

)
e2x = −e− cos y + c.

Thanks to the initial condition, we have

−1

4
= −1 + c⇔ c =

3

4
.

Eventually, the solution of the IVP (3) is given by the
relation

1

2

(
x− 1

2

)
e2x = −e− cos y +

3

4
.

Exercise IV

On the interval
(
−π2 ,

π
2

)
, the DE in the IVP (4) is equiv-

alent to
tanx dx+ 2y dy = 0,

which is obviously equivalent to

− tanx dx = 2y dy.

Integrating this equality, we obtain

ln | cosx| = y2 + k,

which is equivalent to

ln cosx = y2 + k

since cosx > 0 for all x ∈
(
−π2 ,

π
2

)
. Thus

cosx = ey
2+k ⇔ e−y

2

cosx = c.

Using the initial condition, we have

y(0) = 1⇔ e−1 = c.
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That is

e−y
2

=
1

e cosx
⇔ −y2 = ln

(
1

e cosx

)
,

which is equivalent to

y2 = 1 + ln cosx.

Now, as y(0) = 1 > 0, the function y is nonnegative in
an appropriate open interval containing 0. Thus, the
solution of the IVP (4) is given by

y =
√
1 + ln cosx, on that appropriate interval.

The largest possible interval on which y is defined is

(− cos−1(e−1), cos−1(e−1)).

Exercise V

The DE (5) is linear in x, its normal form is

dx

dy
+
y + 2

y + 1
x =

2ye−y

y + 1
.

Now, we have∫
y + 2

y + 1
dy =

∫ (
1 +

1

y + 1

)
dy

= y + ln |y + 1|+ k.

Thus, an integrating factor is given by

u(y) = Exp

(∫
y + 2

y + 1
dy

)
= ey(y + 1)

Multiplying both sides of the normal form by the inte-
grating factor we obtained above, we get

d

dy
((y + 1) eyx) = ey(y + 1)

2ye−y

y + 1
= 2y.

Thus, integrating this equality, we obtain

(y + 1)eyx = y2 + c,

and consequently

x =
y2

y + 1
e−y +

c

y + 1
e−y,

is the general solution of the DE (5).

Exercise VI

One may rewrite the DE (6) as

dx

dy
=
yey − 2x

y
= ey − 2

y
x.

In particular, we have

dx

dy
+

2

y
x = ey. (10)

This clearly a linear (in x) first order differential equa-
tion. An integrator factor is given by

u(x) = Exp

(∫
2

y
dy

)
= y2.

Multiplying both sides of (10) by this integrating factor,
we obtain

d

dy
(y2x) = eyy2.

That is, using integration by parts, we can write

y2x =

∫
eyy2 dy = y2ey − 2

∫
yey dy

= y2ey − 2

(
yey −

∫
ey dy

)
= y2ey − 2yey + 2ey + c.

All in all, we obtain that the general solution of the DE
(6) is given by

x =

(
1− 2

y
+

2

y2

)
ey +

c

y2
, ∀c ∈ R.

Exercise VII

The DE (7) is clearly linear. Its normal form is

y′ +
1

t
y = t3 ln t.

An integrating factor of this DE is given by

Exp

(∫
1

t
dt

)
= t.

Multiplying the DE written in its normal form above
by this integrating factor, we obtain

d

dt
(ty) = t4 ln t.

This leads to

ty =

∫
t4 ln t dt

=
1

5
t5 ln t− 1

5

∫
t5

1

t
dt

=
1

5
t5 ln t− 1

25
t5 + c.

Eventually, the one-parameter family of solutions of
the DE (7) is given by

y(t) =
1

5
t4 ln t− 1

25
t4 +

c

t
, ∀c ∈ R.

Exercise VIII

The DE is clearly linear, its normal form is given by

dy

dx
+

1

x
y =

2

x2(x− 2)
. (11)
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An integrating factor of this DE is given by

u(x) = e
∫

1
x dx = x.

Multiplying both sides of the DE (11) by x to get

(xy)′ =
2

x(x− 2)
.

That is

y =
1

x

(∫
2

x(x− 2)
dx

)
=

1

x

(∫ (
1

x− 2
− 1

x

)
ds

)
=

1

x

(
ln

∣∣∣∣x− 2

x

∣∣∣∣+ c

)

Thanks to the initial condition y(1) = 1, we have c = 1.
Thus

y =
1

x
ln

∣∣∣∣x− 2

x

∣∣∣∣+ 1

x

is the solution of the IVP (8).

The interval of validity of the solution is the largest
interval I containing 1, which does not contain 0 or 2.
Thus, we have clearly

I = (0, 2).

Exercise IX

On the one side, on (−∞, 1), the DE in the IVP (9) is
equivalent to

dy

dx
+

2x

1 + x2
y =

x

1 + x2
. (12)

. An integrator factor of (12) is given by

u(x) = e
∫

2x
1+x2 dx = 1 + x2.

Thus, we have (
(1 + x2)y

)′
= x

Thus

y =
1

2

x2

1 + x2
+

c

1 + x2
.

As y(0) = 0, we conclude that c = 0, and consequently

y =
1

2

x2

1 + x2
, on (−∞, 1).

On the opposite side, on (1,+∞), the DE in the IVP
(9) is equivalent to

dy

dx
+

2x

1 + x2
y =

2x− 1

1 + x2
. (13)

. Proceeding as above, we obtain that the solution on
(1,+∞) is given by

y =
x2 − x+ c

1 + x2
.

The solution of the IVP (9) on R is given by

y(x) =


1
2

x2

1+x2 if x < 1,

x2−x+c
1+x2 if x ≥ 1.

However as y should be continuous at 1, we get

1

4
=

1− 1 + c

2
=
c

2
,

and therefore c = 1
2 . Next, we have to verify that y is

differentiable at x = 1. For this purpose, we observe
that the left derivative of y at 1 is given by

lim
x→1−

1
2

x2

1+x2 − y(1)
x− 1

= lim
x→1−

1
2

x2

1+x2 − 1
4

x− 1

= lim
x→1−

1

4

1 + x

1 + x2
=

1

4
,

and the right derivative at 1 is given by

lim
x→1+

x2−x+ 1
2

1+x2 − y(1)
x− 1

= lim
x→1−

1

4

3x2 − 4x+ 1

(x− 1)(1 + x2)

= lim
x→1−

3

4

x− 1
3

1 + x2
=

1

4
.

We conclude that y′(1) = 1
4 . Thus y is the unique

solution of the IVP (9) on R.
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