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T his is a list of exercises with corrections. We
do not pretend that this list covers entirely
the whole material of the indicated sections,

and we warmly recommend to not stop practicing
after finishing these exercises. Never forget that
knowledge is a treasure, but practice is the key to
it.

1 Statement

Exercise I

Show that

t = ln

(
2x− 1

x− 1

)
is an implicit solution of the DE

dx

dt
= (x− 1)(1− 2x).

Give the explicit solution and its interval of definition.

Exercise II

Find and sketch teh region where the initial value prob-
lem

y′ = x
√
y, y(x0) = y0,

has a unique solution (following the existence and
uniqueness Theorem).

Exercise III

Consider the DE

y′ + 2xy2 = 0, (1)

• State the order of the DE (1).

• Classify the DE (1) in terms of linearity.

• Verify that

y =
1

x2 + c
,

is a one-parameter family of the DE (1).

• Find the solution of the IVP

y′ + 2xy2 = 0, y(0) = −2. (2)

• Give the largest interval on which the previous
solution is defined.

Exercise IV

Verify that

y =
1 + c et

1− c et
, (3)

is a one-parameter family of solutions of the DE

y′ =
1

2
(y2 − 1).

Find a singular solution of the DE (3).

Exercise V

• Verify that
y = x+

c

x
,

is a one-parameter family of solutions of the DE

xy′ + y = 2x.

• Deduce a solution of the IVP

xy′ + y = 2x, y(−2) = 1, (4)

and find its interval of definition.

Exercise VI

Given that

y =
c e−x

1− c e−x
,

is a one-paramter family of solutions of the DE

y′′ + y2 + y = 0, (5)
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find all singular constant solutions of the DE (5).

Exercise VII

Find and sketch the region where the IVP

dy

dx
=

√
y2 − 4√
x2 − 4

, y(x0) = y0, (6)

has a unique solution for all (x0, y0) following the exis-
tence and uniqueness Theorem.

Exercise VIII

Verify that

x = 1 +
(3t2 + c)3

27
, c ∈ R, (7)

is a one-parameter family of solutions of the DE

dx

dt
= 6t(x− 1)

2
3 . (8)

Find a singular constant solution of the DE (8).

Exercise IX

Given that 2x2− y2−2x = c is a one-parameter family
of solutions of the DE

y
dy

dx
= 2x− 1, (9)

find an explicit solution which satisfies y(1) = −2.

Exercise X

Determine wether the existence and uniqueness Theo-
rem guarantees that the IVP

dy

dx
= xy

2
3 , y(1) = 0, (10)

posses a unique solution or not.

Exercise XI

Verify that x2y4 + x3 − 27 = 0 defines an implicit
solution of the DE

4xy3
dy

dx
+ 2y4 + 3x = 0, (11)

on the interval (0, 3).

Exercise XII

Find the values of b for which the IVP

dy

dx
=

√
y − 6x

x2 + 1
, y(5) = b, (12)

has a unique solution using the existence and unique-
ness Theorem.

2 Correction

Exercise I

By implicit differentiation, we have

1 =
d

dt
ln

(
2x− 1

x− 1

)
=

d

dt
(ln(2x− 1)− ln(x− 1))

=

(
2

2x− 1
− 1

x− 1

)
dx

dt

= − 1

(2x− 1)(x− 1)

dx

dt
.

In particular,

dx

dt
= (x− 1)(1− 2x).

To obtain an explicit solution x(t), it is enough to in-
verse the expression

t = ln

(
2x− 1

x− 1

)
.

That is

et =
2x− 1

x− 1
⇐⇒ x(et − 2) = et − 1

⇐⇒ x =
et − 1

et − 2
.

Exercise II

The conditions of the existence and uniqueness Theo-
rem are: f and ∂f

∂y are continuous on an open rectangle
containing (x0, y0) where f(x, y) = x

√
y. This condi-

tions clearly translates to y > 0. Then, the required
region is R = {(x, y) ∈ R2 | y > 0}. That is the upper
half plane not containing the x−axis.

x

y

Exercise III

• The DE is of first order.

• The DE involves a quadratic term in y, namely y2,
so it is clearly nonlinear.

• Let y = 1
x2+c , then for all c ∈ R, we have clearly

y′ + 2xy2 =
−2x

(x2 + c)2
+

2x

(x2 + c)2
= 0.

In particular, y = 1
x2+c is a one-parameter family

of solutions to the DE (1).
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• We have

y(0) = −2⇐⇒ 1

c
= −2⇐⇒ c = −2.

That is y = 1
x2−2 is the solution of the the IVP (2).

• On the one hand, clearly the function x 7→ 1
x2−2

is neither continuous at
√
2 nor at −

√
2. On the

other hand, the interval should contain 0. Thus,
the largest interval on which the solution to the
IVP (2) is defined is I = (−

√
2,
√
2).

Exercise IV

On the one hand, using (3), we have

y′ =
c et(1− c et) + c et(1 + c et)

(1− c et)2

=
2c et

(1− c et)2
.

On the other hand, we have

y2 − 1 =

(
1 + c et

1− c et

)2

− 1

=
1 + c2 e2t + 2c et − 1− c2 e2t + 2c et

(1− c et)2

=
4c et

(1− c et)2
= 2y′

That is
y′ =

1

2
(y2 − 1).

In other words, y = 1+c et

1−c et , is a one-parameter family
of solutions of the DE y′ = 1

2 (y
2 − 1).

In order to find a singular solution, we look for constant
solutions (or equilibrium solutions). For this purpose,
we let y = k, where k denotes an arbitrary constant.
y is a solution of y′ = 1

2 (y
2 − 1) if and only if 0 =

1
2 (k

2 − 1) which means if and only if k = ±1. Thus
clearly k = 1 and k = −1 are the constant solutions of
the DE y′ = 1

2 (y
2 − 1). Now, observe that the solution

y = 1 can be obtained from the one-parameter family
of solutions y = 1+c et

1−c et by setting c = 0. However, there

is no constant c such that −1 = 1+c et

1−c et . Indeed,

−1 =
1 + c et

1− c et
⇐⇒ 1 + c et = −1 + c et

⇐⇒ 1 = −1⇐⇒ absurd !

In summary, we demonstrated that y = −1 is a singular
solution of the DE y′ = 1

2 (y
2 − 1).

Exercise V

Let y = x+ c
x , then

xy′ + y = x
(
1− c

x2

)
+ x+

c

x

= x− c

x
+ x− c

x
= 2x.

Therefore, y = x + c
x is a one-parameter family of

solutions of the DE xy′ + y = 2x.
To find a solution to the IVP (4), it is enough to solve
for c the following equation

−2− c

2
= 1⇐⇒ c = −6.

thus y(x) = x − 6
x is the desired solution. Clearly

this function is not continuous at x = 0, and since the
interval of validity should contain −2, we obtain that
the interval of definition (or validity) is I = (−∞, 0).

Exercise VI

The constant solutions of the DE (5) are y = k such
that

k2 + k = 0⇐⇒ k(k + 1) = 0⇐⇒ k = 0 or k = −1.

Let us denote the constant solutions as y1 = 0 and
y2 = −1 and check wether these solutions belong to
the one-parameter family y = c e−x

1−c e−x . Clearly, if we
set c = 0 in the latter expression, we obtain y = 0 = y1.
Thus y1 is not a singular solution. Now, we check y2, if
y2 is not a singular solution, then we should be able to
find c ∈ R such that

−1 =
c e−x

1− c e−x
⇐⇒ −1 + c e−x = c e−x ⇐⇒ −1 = 0

⇐⇒ absurd !

Thus, y2 = −1 is a singular solution of the DE y′′+y2+
y = 0.

Exercise VII

Thanks to the existence and uniqueness Theorem, the
IVP (6) has a unique solution if f and ∂f

∂y are continuous
on an open rectangle R containing (x0, y0) where

f(x, y) =

√
y2 − 4√
x2 − 4

.

Clearly

R =
{
(x, y) ∈ R2 |x2 − 4 > 0 and y2 − 4 > 0

}
=
{
(x, y) ∈ R2 |x ∈ (−∞,−2) ∪ (2,+∞)

and y ∈ (−∞,−2) ∪ (2,+∞)}
= (−∞,−2) ∪ (2,+∞) × (−∞,−2) ∪ (2,+∞).
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x

y

y = 2

y = −2

x = 2x = −2

Exercise VIII

On the one hand, using (7), we have

dx

dt
=

18

27
t (3t2 + c)2 =

2

3
t (3t2 + c)2.

On the other hand

6t(x− 1)
2
3 = 6t

(
1

9
(3t2 + c)2

)
=

2

3
t (3t2 + c)2.

This shows that x given by (7) defines a one-parameter
family of solution of the DE (8). Next, constants solu-
tions x = k of the DE (8) are given by

0 = 6t(k − 1)
2
3 , for all t ∈ R.

Clearly x = k = 1 is the only possible constant solution
of the DE (8). Now, let us suppose that x = 1 is a
member of the one-parameter family os solutions given
by (7). Then, there exists c ∈ R such that for all t ∈ R

1 = 1 +
(3t2 + c)3

27
⇐⇒ 3t2 + c = 0.

Therefore, we observe that c depends on t which con-
tradicts the fact that it is a constant. All in all, we
proved that x = 1 is a singular solution of the DE (8).

Exercise IX

One can easily check the fact that 2x2 − y2 − 2x = c
defines a one-parameter family of solution of the DE
(9). We want to find the particular solution satisfying
the condition y(1) = −2. For this purpose, we simply
equate this fact and obtain

c = −4.

Thus the solutions of the IVP

(9), y(1) = −2.

Satisfy 2x2 − y2 − 2x = −4 . In particular,

y = ±
√
2x2 − 2x+ 4.

But, as y(1) = −2, we obtain that the unique solution
of the DE (9) is given by

y = −
√
2x2 − 2x+ 4.

Exercise X

If we let f(x, y) = xy
2
3 , then

∂f

∂y
=

2

3
xy−

1
3 ,

which is defined and continuous for y 6= 0. As ∂f
∂y is not

continuous on any open rectangle containing the point
(1, 0), the existence and uniqueness Theorem does not
guarantee that the IVP (10) has a unique solution.

Exercise XI

By implicit differentiation, we have

2xy4 + 4x2y′y3 + 3x2 = 0.

In particular, multiplying both sides of this equation
by 1/x, we get exactly the DE (11). Now, to claim that
the DE (11) has a solution on (0, 3), we have to show
that the relation x2y4 + x3 − 27 = 0 has at least one
solution defined on (0, 3). For this purpose, observe
that this relation can be written as

y = ±
(
27− x3

x2

) 1
4

,

which makes sense for all x ∈ (0, 3). Therefore, we
conclude that the relation x2y4 + x3 − 27 = 0 defines
an implicit solution of the DE (11).

Remark 2.1. In order to be able to state that a
relation G(x, y) = 0 defines an implicit solution
to a given DE, we have to show that the equation
G(x, y) = 0 has at least one solution. This is eas-
ily shown when we can extract the expression of
the solution y from the equation G(x, y) (and in
this case, the solution is actually explicit and no
longer implicit). When this is not possible, one has
to resort to a result which is out of our MATH202
program, namely the implicit function Theorem.
Roughly speaking, this Theorem tells you that if
G(x, y) is differentiable and its partial derivatives
are continuous such that ∂G

∂y 6= 0 for all (a, b) with
a ∈ I and b such that G(a, b) = 0, then the relation
G(x, y) = 0 has at least one solution. Again this
result is out of your program and we shall not ask
you to use it. Wemention it here just to be rigorous
and for your mathematical culture.
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Exercise XII

Let

f(x, y) =

√
y − 6x

x2 + 1
.

Then, we have

∂f

∂y
=

1

2(x2 + 1)
√
y − 6x

Clearly f and ∂f
∂y are continuous on the region R given

by
R =

{
(x, y) ∈ R2 | y > 6x

}
.

Therefore, following the existence and uniqueness The-
orem, the IVP (12) has a unique solution on an ap-
propriate interval containing 5 if and only if y(5) >
6× 5 = 30, that is if and only if b > 30.
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