KFUPM--Term 172

Math 201	Quiz # 1(a)	Time: 20 minutes		Date: 6-2-2018
Name	ID #	Sr #	Sec. 06	Marks:- / ₆

Q1. Sketch the parametric curve C: $x = 1 - t^2$, y = t - 2, $-1 \le t \le 2$ and indicate the initial point, the terminal point and the direction in which C is traced as t increases. Also find the corresponding cartesian equation.

Q2. Find the length of the following parametric curve $x = ln(\sec t + \tan t) - \sin t, \ y = \cos t; \ 0 \le t \le \pi/3.$

KFUPM-----Term 172

Math 201	Quiz # 1(b)	Time: 20 minutes	D	ate: 6-2-2018
Name	ID #	Sr #	Sec.06	Marks:- / ₆

Q 1. Sketch the parametric curve C: $x = -\sin t$, $y = \cos t$, $\frac{\pi}{4} \le t \le \frac{3\pi}{2}$ and indicate the initial point, the terminal point and the direction in which C is traced as t increases. Also find the corresponding cartesian equation

Q2. For which values of t, the parametric curve $x = t^3 - 12t$, $y = t^2 - 1$ is concave upward?

KFUPM---Term 172

Math 201	Quiz # 1(c)	Time: 20 minutes		Date: 6-2-2018
Name	ID #	Sr #	Sec. 08	Marks:- / ₆

Q1. Sketch the parametric curve C: $x = \sin 2t$, $y = \sin t - \cos t$, $0 \le t \le \frac{3\pi}{4}$ and indicate the initial point, the terminal point and the direction in which C is traced as t increases. Also find the corresponding cartesian equation.

Q2. Find an equation of tangent line to the parametric curve $x = t^3 - 12t$, $y = t^2 - 1$ when t = 1.

KFUPM----Term 172

Math 201	Quiz # 1(d)	Time: 20 minutes	Date: 6-2-2018
Name	ID #	Sr # Sec. 08	Marks:- / ₆

Q 1. Sketch the parametric curve C: $x = 2 \cos t$, $y = 1 + \sin t$, $\frac{3\pi}{2} \le t \le 2\pi$. and indicate the initial point, the terminal point and the direction in which C is traced as t increases. Also find the corresponding cartesian equation.

Q2. Find area of the surface generated by revolving the curve: $x = \cos t$, $y = 1 + \sin t$, $(0 \le t \le \pi/2)$ about x-axis.